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Abstract. We analyze the dynamics of three models of mutualism, establish-
ing the global stability of coexisting equilibria by means of Lyapunov’s second

method. This further establishes the usefulness of certain Lyapunov function-

als of an abstract nature introduced in an earlier paper. As a consequence, it
is seen that the use of higher order self-limiting terms cures the shortcomings

of Lotka-Volterra mutualisms, preventing unbounded growth and promoting

global stability.

1. Introduction. As seen in Holland and Bronstein [12], interactions between pop-
ulations of different species can be classified, by the perceived positive (+), neutral
(0) or negative (–) effects of each species on the other, into six types: mutualism
(+ +), predation (+ –), commensalism (+ 0), neutralism (0 0), ammensalism (0 –)
and competition (– –). In this regard, a mutualistic interaction of two species is
then an association which benefits both.

Mutualisms usually involve the exchange of resources between species, each of
them trading a resource to which it has easy access for another one difficult to ac-
quire. For instance, most terrestrial plants rely on mycorrizal fungi for the uptake
of phosphorus, providing carbon in return, while making available nectar and fruits
to insects in exchange for pollination and seed transportation, respectively. Other
common mutualisms involve protection from natural enemies or from unfavorable
environmental conditions. For instance, acacia ants (Pseudomyrmex ferruginea)
defend the bull-horn acacia (Acacia cornigera) from browsing by herbivores in ex-
change for nutrients and sheltering (Palmer et al. [20]).

Mutualisms are of key importance for the apparition of ancient eukaryotic cells,
as chloroplasts and mitochondria were initially independent organisms. They are
also a major source of new traits, since entire organisms can be acquired, the traits
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gained in this way being more complex than those obtained by transfer of isolated
genes (Douglas [3]). Further, all living organisms are currently believed to take
part in a mutualistic association at some point in their lives, some in as many as
hundreds (Bronstein et al. [2]).

If neither species can survive without the other, as it is the case with the pairing
between acacia ants and bull-horn acacia, the mutualism is called obligate, while
if each species can survive on their own, the mutualism is called facultative. For
instance, a plant that is subject to successful self-pollination or cross-pollination,
while also being pollinated by multiple insects, is involved in facultative mutualisms
with them.

A central paradigm of modern ecological thinking being the Darwinian theory of
natural selection, the antagonistic interactions (predation and competition) received
a far greater attention. The fact that the Lotka-Volterra model of mutualism, in
which the interspecies competition terms have their sign changed from negative to
positive, does normally have unbounded solutions unless the interspecies interaction
is weak or asymmetric, probably also helped convey the idea that mutualisms are
of less importance. May [17] noted that Lotka-Volterra models are totally inad-
equate to represent mutualisms, as “they tend to lead to silly solutions in which
both populations undergo unbounded exponential growth, in an orgy of mutual
benefaction”.

To overcome these limitations, and recognizing that mutualisms involve both
costs and benefits, such associations between species have begun to be thought as
consumer-resource interactions, not unlike predator-prey interactions, but in which
benefits outweigh costs (Holland and DeAngelis [13]). In this unifying framework,
most mutualisms fit one of the following categories: two-way consumer-resource
interactions, one-way consumer-resource interactions and indirect mutualisms via
a third species consumer or resource, and also one of the six food web topologies
given in [13]. Under these assumptions, saturating functions for resource supply and
costs associated to providing resources act as limiting factors, preventing unbounded
growth.

In Vargas-De-León [24], global stability conditions for two-species models of mu-
tualism are investigated by using suitably constructed Lyapunov functionals and
LaSalle’s invariance principle. The models of concern in [24] are

dx1
dt

= r1x1

[(
1− e1

r1

)
− x1
K1

]
+
r1b12
K1

x1x2 (1)

dx2
dt

= r2x2

[(
1− e2

r2

)
− x2
K2

]
+
r2b21
K2

x1x2,

introduced by Vandermeer and Boucher in [23] to investigate the situation in which
the effects of mutualism are density independent and

dx1
dt

= (r1 − e1)x1 −
r1x

2
1

K1 + b12x2
(2)

dx2
dt

= (r2 − e2)x2 −
r2x

2
2

K2 + b21x1
,

introduced by Wolin and Lawlor in [27] to represent the situation in which the
mutualism has the most impact at higher densities. In the above models, both
representing facultative mutualisms, ri is the intrinsic birth rate of species xi, while
Ki and ei are the carrying capacity of the environment and the harvesting effort,
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respectively, with regard to the same species xi, i = 1, 2. Also, b12 and b21 are
strictly positive constants quantifying the mutualistic support the species give to
each other. Both models were initially introduced without accounting for the effects
of harvesting. Also, if one species is missing, the other behaves in the same way in
both models, namely in a logistic fashion.

In Georgescu and Zhang [7], paper which attempts to obtain global stability
results for mutualisms under more general conditions than those of [24], a general
model of a mutualistic interaction is considered:

dx1
dt

= a1(x1) + f1(x1)g1(x2) (3)

dx2
dt

= a2(x2) + f2(x2)g2(x1).

Several sets of hypotheses involving in various proportions monotonicity properties
and sign conditions are imposed upon the real continuous functions a1, a2, f1, f2,
g1, g2, assuming a priori the existence of a coexisting equilibrium E∗ = (x∗1, x

∗
2).

Global stability properties for E∗ under the above-mentioned sets of hypotheses are
obtained with the help of the following Lyapunov functionals:

V1(x1, x2) =

∫ x1

x∗
1

g2(θ)− g2(x∗1)

f1(θ)
dθ +

∫ x2

x∗
2

g1(θ)− g1(x∗2)

f2(θ)
dθ,

V2(x1, x2) =

∫ x1

x∗
1

(
1− g2(θ)

g2(x∗1)

)
1

a1(θ)
dθ +

∫ x2

x∗
2

(
1− g1(θ)

g1(x∗2)

)
1

a2(θ)
dθ,

V3(x1, x2) =

∫ x1

x∗
1

(
1− g2(x∗1)

g2(θ)

)
1

f1(θ)
dθ

+

[∫ x2

x∗
2

(
1− g1(x∗2)

g1(θ)

)
1

f2(θ)
dθ

]
g1(x∗2)

g2(x∗1)
.

The functional V1, in fact a generalization of the classical Lotka-Volterra logarithmic
functional, was first introduced in Harrison [10], although with different signs of the
numerators, due to the fact that the interaction considered in [10] is a predation,
not a mutualism. See Korobeinikov [16] and Georgescu et al. [5] for the use of
functionals related to V3 to establish the stability of general predator-prey models,
Goh [8], Vargas-De-León and Gómez-Alcaraz [26] for stability results for models of
mutualism or commensalism by a related approach. See also Korobeinikov [14, 15],
Georgescu and Hsieh [4], Georgescu and Zhang [6], Vargas-De-León [25], Melnik and
Korobeinikov [19], McCluskey [18] for results on the stability of disease propagation
models via related functionals. Note that [25] and [6] allow for the possibility of
relapse, while [19] allows for age structure and [18] allows for varying infectivity.

However, a number of assumptions in [7], although having a certain degree of
generality, are rather involved and tailored to the particularities of the models in
[24], which they attempt to enlarge. The main results in [7] are given in four
theorems. Two of them require strong monotonicity conditions on the components
of (3) such as:

a1
f1

+ g2 and
a2
f2

+ g1 decreasing, (4)

or

f1
a1

+
1

g2
and

f2
a2

+
1

g1
increasing if g1g2 > 0 and decreasing otherwise. (5)
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This last condition is used together with sign conditions on these functions:

a2g1 < 0 and a1g2 < 0 on (0,∞).

The other two theorems use weaker monotonicity conditions but the trade-off
is that they each require two extra inequalities, which are necessary for the use of
V3 and V1, respectively. These are rather lengthy and involving several auxiliary
functions.

Nevertheless, there are biologically relevant situations for which some of these
assumptions do not apply. In what follows, we shall prove that the Lyapunov
functionals V1, V2, V3 are also useful for the study of other models of mutualism,
namely for a model with restricted growth rates proposed by Graves et al. in [9]
and for versions of (1) and (2) featuring a Richards growth function instead of the
classical logistic one. As a byproduct, we derive the fact that a self-limiting term
of a higher order prevents unbounded growth and promotes global stability.

2. A mutualistic model with restricted growth rates. In this section, we
shall employ the Lyapunov functional V3 in order to establish the global stability
of the coexisting equilibrium for the following model with restricted growth rates

dx1
dt

= r1x1

(
1− x1

K1

)
+ c1x1(1− e−α2x2) (6)

dx2
dt

= r2x2

(
1− x2

K2

)
+ c2x2(1− e−α1x1),

proposed by Graves et al. in [9]. Named by its proponents “limited per capita
growth rate (LGR) mutualism model”, the model (6) assumes that each species
enhances the growth rate of the other without affecting its carrying capacity. The
key assumption made in [9] to derive (6) is that the marginal rate of change for the
per capita growth rate of each species due to the increase of the other species is
proportional to the difference between the maximum growth rate and the current
growth rate. Sufficient biological evidence exists for this modeling assumption such
as symbioses between plants and nitrogen-fixing microorganisms (see a detailed
description in [9]).

We assume here that r1, c1, α1, r2, c2, α2 > 0, that is, the model (6) describes a
facultative mutualism (although, mutatis mutandis, our approach can accommodate
obligate mutualisms as well) and, in the absence of a species, the growth of the other
is of a logistic nature. Let us observe first that (6) fits the abstract framework (3),
with

a1(x1) = r1x1

(
1− x1

K1

)
, a2(x2) = r2x2

(
1− x2

K2

)
, f1(x1) = c1x1,

g1(x2) = 1− e−α2x2 , f2(x2) = c2x2, g2(x1) = 1− e−α1x1 .

A quick review of the assumptions used in [7] shows that none of the stability
theorems there can be applied for (6). For example assumption (4) no longer holds.
Furthermore, the condition on a2g1 and a1g2 to be negative on (0,∞) cannot be
satisfied here. This means that the theorem in [7] that uses (5) is also inapplicable.
The same is true for the theorems that require the auxiliary inequalities.

By a classical positivity argument for Kolmogorov models of population dynam-
ics, it is seen that (0,∞)× (0,∞) is an invariant region for the system (6). Let us
now establish the existence of a coexisting equilibrium for (6).
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Theorem 2.1. The system (6) has a unique coexisting equilibrium E∗ = (x∗1, x
∗
2).

Proof. First, it is seen that the coordinates x∗1, x∗2 of the coexisting equilibrium E∗

should satisfy the following relations

x∗1 = K1

(
1 +

c1
r1

(
1− e−α2x

∗
2

))
, x∗2 = K2

(
1 +

c2
r2

(
1− e−α1x

∗
1

))
, (7)

which lead to

x∗1 −K1

{
1 +

c1
r1

[
1− e−α2K2

(
1+

c2
r2

(
1−e−α1x

∗
1

))]}
= 0. (8)

Defining ϕ : [0,∞)→ R by

ϕ(x) = x−K1

{
1 +

c1
r1

[
1− e−α2K2

(
1+

c2
r2

(1−e−α1x)
)]}

= 0,

one notes that ϕ is of class C1 on [0,∞), ϕ(0) < 0, limx→∞ ϕ(x) = +∞ and ϕ′

is strictly increasing on [0,∞), which establishes the existence and uniqueness of a
strictly positive root of (8). Consequently, the system (6) has a unique coexisting
equilibrium E∗ = (x∗1, x

∗
2).

After having proved the existence and uniqueness of the coexisting equilibrium,
we are now ready to discuss its stability. The first hurdle is the proper choice of
a Lyapunov functional. In our settings, V2 is unusable, due to the terms 1

a1
and

1
a2

, which will not simplify or be everywhere defined. Also, the line of thought
involving V1, perhaps the simplest of all three Lyapunov functionals, requires a
particular inequality between parameters to hold, namely α1α2 ≤ r1r2

c1c2
. We are now

left with using V3.
We first note that, in this situation, V3 takes the following form

V3(x1, x2) =

∫ x1

x∗
1

e−α1x
∗
1 − e−α1θ

1− e−α1θ

1

c1θ
dθ (9)

+

(∫ x2

x∗
2

e−α2x
∗
2 − e−α2θ

1− e−α2θ

1

c2θ
dθ

)
1− e−α2x

∗
2

1− e−α1x∗
1
.

Using V3, we may establish the following global stability result, whose proof is given
in Appendix A.

Theorem 2.2. The coexisting equilibrium E∗ is globally asymptotically stable in
(0,∞)× (0,∞).

Formally, it would have been possible to write (6) in the following equivalent
form

dx1
dt

= r1x1

(
C1 −

x1
K1

)
− c1x1e−α2x2 (10)

dx2
dt

= r2x2

(
C2 −

x2
K2

)
− c2x2e−α1x1 ,

with C1 = 1 + c1
r1

, C2 = 1 + c2
r2

, which would have led to a simpler expression
of V3. However, in this equivalent form, g1 and g2 have negative signs, while V3
is constructed for positive g1 and g2, requirement which (6) does fulfill, but (10)
does not. Also, the monotonicity of the functions defined in (19) is lost using this
equivalent form. Actually, this seemingly simpler form fails to meet the conditions
for the use of any of the three functionals V1, V2, V3.
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3. Mutualistic models with generalized logistic growth. A modification of
the classical logistic (or Verhulst-Pearl) equation, in the form

dx

dt
= rx

[
1−

( x
K

)p]
has been proposed by Richards [22] in 1959 in order to better fit the growth of
certain biological populations. In the above, x = x(t) represents the size of the
population at time t, r is the intrinsic growth rate of the population, K is its carrying
capacity and p is an additional parameter which allows for further flexibility in the
formulation of the model, specifically for the proper placement of the inflection
point (the point where the growth rate is maximal). Apart from its initial purpose,
Richards equation has been found useful, among other uses, to predict the severity
of a disease outbreak (Hsieh [11]), for which the inflection point represents the
turning point of the outbreak and the growth of the basal area of trees (Pienaar
and Turnbull [21]).

We now attempt to treat versions of (1) and (2) featuring generalized logistic
(Richards) growth, namely models

dx1
dt

= r1x1

[
A1 −

(
x1
K1

)p]
+
r1b12
K1

x1x2 (11)

dx2
dt

= r2x2

[
A2 −

(
x2
K2

)p]
+
r2b21
K2

x1x2,

and respectively

dx1
dt

= r1x1A1 −
r1x

p+1
1

Kp
1 + b12x2

(12)

dx2
dt

= r2x2A2 −
r2x

p+1
2

Kp
2 + b21x1

,

with A1 = 1− e1
r1

, A2 = 1− e2
r2

, p ≥ 1. Let us assume that 0 ≤ e1 < r1, 0 ≤ e2 < r2
and that b12, b21 > 0, K1,K2 > 0, observing that for p = 1 the models (11) and
(12) reduce to (1) and (2), respectively. For the sake of a better correspondence
with the abstract framework (3), we shall denote the coordinates of the positive
equilibria for (11) and (12) with x∗1 and x∗2 as well, since it will always be clear from
the context which model (and therefore which equilibrium) is of concern.

As with the model from the previous section, notice that condition (4) no longer

applies. For example, for model (11), with a1(x1) = r1x1

[
A1 −

(
x1

K1

)p]
, f1(x1) =

r1x1 and g2(x1) = b21
K2
x1 we can see that a1

f1
+g2 is not decreasing for p > 1. A similar

argument can be made about (12). Denoting a1(x1) = r1A1x1, f1(x1) = r1x
p+1
1

and g2(x1) = − 1
Kp

2+b21x1
we can see that a1

f1
+ g2 is not decreasing on its domain if

p > 1. In this last case, condition (5) is also not satisfied.
Let us concentrate on the model (11) first. We start with proving the existence of

the coexisting equilibrium of (11), the proof being parallel to that of Theorem 2.1.

Theorem 3.1. If p = 1, then the system (11) has a unique coexisting equilibrium
E∗1 = (x∗1, x

∗
2) if and only if b12b21 < 1. If p > 1, then the system (11) has a unique

coexisting equilibrium E∗1 = (x∗1, x
∗
2) regardless of the value of b12b21.
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Proof. As seen from (11), the coordinates x∗1, x∗2 of the positive equilibrium E∗1
should satisfy the following relations

A1 −
(
x∗1
K1

)p
+
b12x

∗
2

K1
= 0, A2 −

(
x∗2
K2

)p
+
b21x

∗
1

K2
= 0 (13)

which altogether lead to the equation

A2 −
(
x∗2
K2

)p
+ b21

K1

K2

(
A1 +

b12x
∗
2

K1

) 1
p

= 0. (14)

For p = 1, it is seen that (14) reduces to

A2 −
x∗2
K2

+ b21
K1

K2

(
A1 +

b12x
∗
2

K1

)
= 0,

which has a positive solution x∗2 = A2K2+b21A1K1

1−b12b21 if and only if b12b21 < 1. In this

circumstance, x∗1 is also uniquely defined by x∗1 = A1K1+b12A2K2

1−b12b21 .

Let us now suppose that p > 1 and define ϕ1 : [0,∞)→ R by

ϕ1(x) = A2 −
(
x

K2

)p
+ b21

K1

K2

(
A1 +

b12x

K1

) 1
p

.

One notes that ϕ1 is of class C1 on [0,∞), ϕ1(0) > 0, limx→∞ ϕ1(x) = −∞, since
p > 1 > 1

p , and ϕ′1 is strictly decreasing on [0,∞), which establishes the existence

and uniqueness of a strictly positive root of (14). Consequently, the system (11)
has a unique coexisting equilibrium E∗1 = (x∗1, x

∗
2) whose coordinates verify the

equilibrium relations (13).

The fact that no further existence condition is required for p > 1 does not come as
a surprise. If p = 1, the model (11) actually represents a Lotka-Volterra mutualism,
which is still prone to exponential growth, since the mutualistic terms r1b12

K1
x1x2

and r2b21
K2

x1x2 are of order 2 with respect to (x1, x2), the same as the self-limiting

terms r1
K1
x21 and r2

K2
x22. Consequently, a condition limiting the combined strength

of the mutualistic interactions is needed in order to prevent unrestricted growth.
If p > 1, however, the self-limiting terms are of a higher order, p + 1, than the
mutualistic terms, which remain of order 2, and no further precaution is needed.

To prove the global stability of E∗1, let us first note that(
1− 1

x

)
(1− xp) ≤ 0, for x > 0, p ≥ 0, (15)

inequality which is of great importance in what follows. Note also that if p = 0, the
left-hand side is identically 0, while if p > 0 the equality holds if and only if x = 1.

Let us observe that (11) fits the abstract framework (3), with

a1(x1) = r1x1

[
A1 −

(
x1
K1

)p]
, a2(x2) = r2x2

[
A2 −

(
x2
K2

)p]
,

f1(x1) = x1, g1(x2) =
r1b12x2
K1

, f2(x2) = x2, g2(x1) =
r2b21x1
K2

.
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In this situation, V3 takes the form

V3(x1, x2) =

∫ x1

x∗
1

(
1− x∗1

θ

)
1

θ
dθ +

r1b12K2x
∗
2

r2b21K1x∗1

[∫ x2

x∗
2

(
1− x∗2

θ

)
1

θ
dθ

]

=

(
ln
x1
x∗1

+
x∗1
x1
− 1

)
+
r1b12K2x

∗
2

r2b21K1x∗1

(
ln
x2
x∗2

+
x∗2
x2
− 1

)
.

Using again V3, we may establish the following global stability result, whose proof
is given in Appendix B.

Theorem 3.2. The coexisting equilibrium E∗1 is globally asymptotically stable in
(0,∞)× (0,∞).

Let us now turn our attention to the study of the model (12). Although the
mutualistic interaction acts now in a different way, by decreasing the death rate of
each species, rather than increasing the birth rate, as it previously did, one would
again expect a conclusion similar to the one obtained for (11) by comparing the
orders of magnitude of positive and negative terms in each right-hand side. Namely,
if p = 1, the positive and negative terms have equal order and a further condition
is needed to prevent exponential growth. If p > 1, the negative terms have a larger
order and succeed in limiting the growth of the solutions on their own.

The existence of the coexisting equilibrium can be proved via an argument similar
to the one employed for the proof of Theorem 3.1. One then obtains the following
result.

Theorem 3.3. If p = 1, then the system (12) has a unique coexisting equilibrium
E∗2 = (x∗1, x

∗
2) if and only if A1A2b12b21 < 1. If p > 1, then the system (12) has a

unique coexisting equilibrium E∗2 = (x∗1, x
∗
2) regardless of the value of A1A2b12b21.

Let us also observe that (12) fits the abstract framework (3), with

a1(x1) = r1x1A1, a2(x2) = r2x2A2, f1(x1) = r1x
p+1
1 , f2(x2) = r2x

p+1
2 ,

g1(x2) = − 1

Kp
1 + b12x2

, g2(x1) = − 1

Kp
2 + b21x1

.

In this situation, having in view that

1

Kp
2 + b21x∗1

=
A2

(x∗2)p
,

1

Kp
1 + b12x∗2

=
A1

(x∗1)p
,

V1 takes the form

V1(x1, x2) =
A2b21

(x∗2)pr1

∫ x1

x∗
1

θ − x∗1
(Kp

2 + b21θ)θp+1
dθ

+
A1b12

(x∗1)pr2

∫ x2

x∗
2

θ − x∗2
(Kp

1 + b12θ)θp+1
dθ.

Using V1 this time (or, alternatively, V2), one may obtain the following global sta-
bility result, whose proof is given in Appendix C.

Theorem 3.4. The coexisting equilibrium E∗2 is globally asymptotically stable in
(0,∞)× (0,∞).

It is to be noted that our Lyapunov functionals can be employed to discuss the
stability of certain models of commensalism such as those treated in Vargas-De-León
and Gómez-Alcaraz [26], although not without precautions, since, depending on the
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choices of f1, f2, g1, g2, several denominators of V1, V2, V3 are null, precluding the
respective functional from further use. Also, even after a proper choice of functional,
the x1-part or the x2-part of such functional is null, depending upon which species
is not influenced by the other, and should be replaced with a term defined ad hoc.

4. Conclusions. Establishing global stability of equilibria in biological models is
never a trivial undertaking from a mathematical perspective. Nevertheless, it is
highly valuable whenever it is achievable. Most authors rely on local stability theo-
rems for which linearization provides an algorithm that can be applied in all cases
(although computational difficulties may arise even in this case). Local stability
results do not usually provide a direct information on the basin of attraction of the
locally stable equilibrium. From a biological perspective, this is significant because
the model is a crude approximation of reality and, if the basin of attraction is small,
then a question arises whether the modeled population can realistically be imagined
as starting in that basin of attraction to further conclude the convergence toward
the equilibrium.

While no universally suitable Lyapunov function exists for all models, we have
seen that several types of functions proved suitable for this role. The functionals
V1, V2 and V3 described at the beginning of this paper were used in several cases,
including in [7] that provides a general mutualistic model. In that generalization,
several technical assumptions were inevitable. However, important biological fea-
tures do not fit the framework of these assumptions (while other certainly do). In
this paper we showed that the functionals mentioned before can be used in several
other models of mutualsim that do not satisfy all of the assumptions in [7], namely
mutualistic models with restricted growth rate and generalized logistic growth. As
mentioned before in this paper, both of these models are important from a biological
perspective due to either field evidence and/or added realism by avoiding exponen-
tial population growth. Thus, our main result consists in expanding the area of
usefulness of these functionals in establishing stability results for these types of
models.

This is by no means exhaustive. There are still many more possible models of
mutualism or commensalism that do not fit all of the assumptions described in [7] or
in the present paper. Some examples are Allee effects for the part of the model that
describes the independent growth rate of each species or more complex functional
forms for the interaction part between the two. Incorporating these assumptions
will open research questions not only concerning stability results but also interest-
ing biological ones such as: under what conditions mutualistic or commensalistic
species can avoid or lower the Allee threshold which is an interesting question to
ask regarding endangered species. This research is currently underway and we will
report it in a future article.
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Appendix A. Proof of Theorem 2.2.

Proof. First, it is seen that V3 increases whenever any of |x1 − x∗1| and |x2 − x∗2|
increases and that V3(x1, x2) ≥ 0, with equality if and only if x1 = x∗1 and x2 = x∗2.
Also, the level sets of V3 do not have limit points on the boundary of (0,∞)×(0,∞)
since V3(x1, x2) tends to ∞ if either x1 or x2 tends to 0 or to ∞.

We now evaluate the derivative of V3 along the solutions of (6). Our approach

is to split
·
V3 into two categories of terms, namely terms that can be evaluated by

means of monotonicity of certain auxiliary functions Φ1 and Φ2 to be introduced
below and terms that can be evaluated by means of AM–GM inequality. To this
purpose, two equilibrium conditions derived from (7) will be of great importance.
One sees that

·
V3 =

e−α1x
∗
1 − e−α1x1

1− e−α1x1

1

c1x1

dx1
dt

+
e−α2x

∗
2 − e−α2x2

1− e−α2x2

1

c2x2

1− e−α2x
∗
2

1− e−α1x∗
1

dx2
dt

(16)

=
e−α1x

∗
1 − e−α1x1

1− e−α1x1

r1
c1

[
1− x1

K1
+
c1
r1

(1− e−α2x2)

]
+
e−α2x

∗
2 − e−α2x2

1− e−α2x2

r2
c2

[
1− x2

K2
+
c2
r2

(1− e−α1x1)

]
1− e−α2x

∗
2

1− e−α1x∗
1

= T1 + T2.

Let us observe that, by algebraic manipulations

T1 =
e−α1x

∗
1 − e−α1x1

1− e−α1x1

r1
c1

(17)

·
[
e−α1x1 − e−α1x

∗
1

1− e−α1x∗
1

+
1− e−α1x1

1− e−α1x∗
1
− x1
K1

+
c1
r1

(1− e−α2x2)

]
=
e−α1x

∗
1 − e−α1x1

1− e−α1x1

r1
c1

e−α1x1 − e−α1x
∗
1

1− e−α1x∗
1

+
e−α1x

∗
1 − e−α1x1

1− e−α1x1

[
r1
c1

(
1− e−α1x1

1− e−α1x∗
1
− x1
K1

)
+ 1− e−α2x2

]
= T11 + T12.

Note that T11 ≤ 0, with equality if and only if x1 = x∗1. Also, from the equilibrium
relations (7), it follows that

1 =
x∗1
K1
− c1
r1

(
1− e−α2x

∗
2

)
. (18)

Consequently, by substituting (18) into (17),

T12 =
e−α1x

∗
1 − e−α1x1

1− e−α1x1

[
r1
c1

x1
K1

(
1− e−α1x1

1− e−α1x∗
1

K1

x1
− 1

)
+ 1− e−α2x2

]
=
e−α1x

∗
1 − e−α1x1

1− e−α1x1

·
{
r1
c1

x1
K1

[
1− e−α1x1

1− e−α1x∗
1

K1

x1

(
x∗1
K1
− c1
r1

(
1− e−α2x

∗
2

))
− 1

]
+ 1− e−α2x2

}
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=
e−α1x

∗
1 − e−α1x1

1− e−α1x1

·
{
r1
c1

x1
K1

[
1− e−α1x1

1− e−α1x∗
1

x∗1
x1
− 1

]
− 1− e−α1x1

1− e−α1x∗
1

(
1− e−α2x

∗
2

)
+ 1− e−α2x2

}
.

Let us now define

Φ1 : (0,∞)→ (0,∞), Φ1(x) =
1− e−α1x

x
, (19)

Φ2 : (0,∞)→ (0,∞), Φ2(x) =
1− e−α2x

x
.

Noting that

Φ′1(x) = −e
−α1x

x2
(eα1x − (1 + α1x)) < 0,

Φ′2(x) = −e
−α2x

x2
(eα2x − (1 + α2x)) < 0

it follows that Φ1,Φ2 are strictly decreasing on (0,∞). With these notations,

T12 =
e−α1x

∗
1 − e−α1x1

1− e−α1x1

r1
c1

x1
K1

[
Φ1(x1)

Φ1(x∗1)
− 1

]
+
(
e−α1x

∗
1 − e−α1x1

)(
−1− e−α2x

∗
2

1− e−α1x∗
1

+
1− e−α2x2

1− e−α1x1

)
= T121 + T122,

with T121 ≤ 0, the equality holding if and only if x1 = x∗1, since Φ1 is strictly
decreasing. However, the sign of T122 is still undetermined.

By a similar argument, one may evaluate the second term T2 in the right-hand
side of (16) and find that

T2 =
e−α2x

∗
2 − e−α2x2

1− e−α2x2

r2
c2

1− e−α2x
∗
2

1− e−α1x∗
1

e−α2x2 − e−α2x
∗
2

1− e−α2x∗
2

(20)

+
e−α2x

∗
2 − e−α2x2

1− e−α2x2

1− e−α2x
∗
2

1− e−α1x∗
1

[
r2
c2

(
1− e−α2x2

1− e−α2x∗
2
− x2
K2

)
+ 1− e−α1x1

]
= T21 + T22.

Note that T21 ≤ 0, with equality if and only if x2 = x∗2. Also, from the equilibrium
relations (7), it follows that

1 =
x∗2
K2
− c2
r2

(
1− e−α1x

∗
1

)
. (21)

Consequently,

T22 =
e−α2x

∗
2 − e−α2x2

1− e−α2x2

1− e−α2x
∗
2

1− e−α1x∗
1{

r2
c2

x2
K2

[
1− e−α2x2

1− e−α2x∗
2

K2

x2

(
x∗2
K2
− c2
r2

(
1− e−α1x

∗
1

))
− 1

]
+ 1− e−α1x1

}
=
e−α2x

∗
2 − e−α2x2

1− e−α2x2

1− e−α2x
∗
2

1− e−α1x∗
1

·
{
r2
c2

x2
K2

[
1− e−α2x2

1− e−α2x∗
2

x∗2
x2
− 1

]
− 1− e−α2x2

1− e−α2x∗
2

(1− e−α1x
∗
1 ) + 1− e−α1x1

}
.
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It follows that

T22 =
e−α2x

∗
2 − e−α2x2

1− e−α2x2

1− e−α2x
∗
2

1− e−α1x∗
1

r2
c2

x2
K2

[
Φ2(x2)

Φ2(x∗2)
− 1

]
+
(
e−α2x

∗
2 − e−α2x2

)(
−1 +

1− e−α1x1

1− e−α2x2

1− e−α2x
∗
2

1− e−α1x∗
1

)
= T221 + T222,

with T221 ≤ 0, the equality holding if and only if x2 = x∗2, since Φ2 is strictly
decreasing. Again, the sign of T222 is undetermined.

By using (16), (17) and (20), it now follows that

·
V3 = T11 + T121 + T21 + T221

+
(
e−α1x

∗
1 − e−α1x1

)(
−1− e−α2x

∗
2

1− e−α1x∗
1

+
1− e−α2x2

1− e−α1x1

)
+
(
e−α2x

∗
2 − e−α2x2

)(
−1 +

1− e−α1x1

1− e−α2x2

1− e−α2x
∗
2

1− e−α1x∗
1

)
= T11 + T121 + T21 + T221

+
(
−1 + e−α1x

∗
1 + 1− e−α1x1

)(
−1− e−α2x

∗
2

1− e−α1x∗
1

+
1− e−α2x2

1− e−α1x1

)
+
(
−1 + e−α2x

∗
2 + 1− e−α2x2

)(
−1 +

1− e−α1x1

1− e−α2x2

1− e−α2x
∗
2

1− e−α1x∗
1

)
= T11 + T121 + T21 + T221

+
(

1− e−α2x
∗
2

)[
2− 1− e−α2x2

1− e−α1x1

1− e−α1x
∗
1

1− e−α2x∗
2
− 1− e−α1x1

1− e−α2x2

1− e−α2x
∗
2

1− e−α1x∗
1

]
.

Note that

2− 1− e−α2x2

1− e−α1x1

1− e−α1x
∗
1

1− e−α2x∗
2
− 1− e−α1x1

1− e−α2x2

1− e−α2x
∗
2

1− e−α1x∗
1
≤ 0,

by AM–GM inequality (i.e. the inequality between the arithmetic mean and the

geometric mean for two positive numbers), with equality if and only if 1−e−α1x1

1−e−α2x2
=

1−e−α1x
∗
1

1−e−α2x
∗
2

. Since the previous remarks yield that T11 + T121 ≤ 0 with equality if

and only if x1 = x∗1 and T21 + T221 ≤ 0 with equality if and only if x2 = x∗2, we
have V3 ≤ 0, with equality if and only if x1 = x∗1 and x2 = x∗2. Since E∗ is the

only invariant set in M =

{
(x1, x2);

·
V 3(x1, x2) = 0

}
, then, by LaSalle’s invariance

theorem, E∗ is globally asymptotically stable in (0,∞)× (0,∞).

Appendix B. Proof of Theorem 3.2.

Proof. First, it is seen that V3 increases whenever any of |x1 − x∗1| and |x2 − x∗2|
increases and that V3(x1, x2) ≥ 0, with equality if and only if x1 = x∗1 and x2 = x∗2.
Also, the level sets of V3 do not have limit points on the boundary of (0,∞)×(0,∞)
since V3(x1, x2) tends to ∞ if either x1 or x2 tends to 0 or to ∞.

We now evaluate the derivative of V3 along the solutions of (11). We shall split
·
V3

into terms that can be estimated by means of (15) and terms that can be estimated
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by means of AM–GM inequality. To this purpose, we shall also use equilibrium
conditions derived from (13). One sees that

·
V3 =

(
1

x1
− x∗1
x21

)
dx1
dt

+
r1b12K2x

∗
2

r2b21K1x∗1

(
1

x2
− x∗2
x22

)
dx2
dt

(22)

= r1

(
1− x∗1

x1

)[
A1 −

(
x1
K1

)p
+
b12x2
K1

]
+
r1b12K2x

∗
2

b21K1x∗1

(
1− x∗2

x2

)[
A2 −

(
x2
K2

)p
+
b21x1
K2

]
.

We note that the equilibrium conditions (13) imply that(
A1 +

b12x
∗
2

K1

)(
K1

x∗1

)p
= 1;

(
A2 +

b21x
∗
1

K2

)(
K2

x∗2

)p
= 1. (23)

Consequently, by substituting (23) into (22), one obtains by rearranging terms that

·
V3 = r1

(
1− x∗1

x1

)[
A1 −

(
x1
x∗1

)p(
A1 +

b12x
∗
2

K1

)
+
b12x2
K1

]
+
r1b12K2x

∗
2

b21K1x∗1

(
1− x∗2

x2

)[
A2 −

(
x2
x∗2

)p(
A2 +

b21x
∗
1

K2

)
+
b21x1
K2

]
= r1A1

(
1− x∗1

x1

)[
1−

(
x1
x∗1

)p]
+ r1A2

b12K2x
∗
2

b21K1x∗1

(
1− x∗2

x2

)[
1−

(
x2
x∗2

)p]
+ r1

(
1− x∗1

x1

)
b12x

∗
2

K1

[
x2
x∗2
−
(
x1
x∗1

)p]
+
r1b12K2x

∗
2

b21K1x∗1

(
1− x∗2

x2

)
b21x

∗
1

K2

[
x1
x∗1
−
(
x2
x∗2

)p]
= T1 + T2 + T3 + T4.

By (15), T1 ≤ 0 and T2 ≤ 0, with inequality if and only if x1 = x∗1 and x2 = x∗2,
respectively. We now establish the sign of T3 + T4. It is seen that

T3 + T4 = r1
b12x

∗
2

K1

{(
1− x∗1

x1

)[
x2
x∗2
−
(
x1
x∗1

)p]
+

(
1− x∗2

x2

)[
x1
x∗1
−
(
x2
x∗2

)p]}
= r1

b12x
∗
2

K1

{
x1
x∗1

(
1− x∗1

x1

)[
1−

(
x1
x∗1

)p−1]

+
x2
x∗2

(
1− x∗2

x2

)[
1−

(
x2
x∗2

)p−1]
+ 2− x∗1x2

x1x∗2
− x∗2x1
x2x∗1

}
≤ 0,

since the first two terms inside the square brackets are negative by (15) (this is
where restriction p ≥ 1 comes from), being equal to 0 if and only if x1 = x∗1 and
x2 = x∗2 (if p > 1) and being identically 0 if p = 1, while the third one is negative
by AM–GM inequality, being equal to 0 if and only if x1

x∗
1

= x2

x∗
2
. Since the previous

remarks yield that T1 ≤ 0 with equality if and only if x1 = x∗1, T2 ≤ 0 with equality
if and only if x2 = x∗2, and T3 + T4 ≤ 0, with equality if and only if x1 = x∗1 and

x2 = x∗2 (if p > 1) and if and only if x1

x∗
1

= x2

x∗
2

(if p = 1), it follows that
·
V3 ≤ 0,
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with equality if and only if x1 = x∗1 and x2 = x∗2. Since E∗1 is the only invariant set

in M =

{
(x1, x2);

·
V 3(x1, x2) = 0

}
, it follows by LaSalle’s invariance theorem that

E∗1 is globally asymptotically stable in (0,∞)× (0,∞).

Appendix C. Proof of Theorem 3.4.

Proof. First, it is seen that V1 increases whenever any of |x1 − x∗1| and |x2 − x∗2|
increases and that V1(x1, x2) ≥ 0, with equality if and only if x1 = x∗1 and x2 = x∗2.
Also, the level sets of V1 do not have limit points on the boundary of (0,∞)×(0,∞)
since V1(x1, x2) tends to ∞ if either x1 or x2 tends to 0 or to ∞.

We now evaluate the derivative of V1 along the solutions of (12). We shall split
·
V1

into terms that can be estimated by means of (15) and terms that can be estimated
by means of AM–GM inequality. To this purpose, we shall also use reformulations
of the equilibrium conditions. One sees that

·
V1 =

A2b21
(x∗2)pr1

x1 − x∗1
(Kp

2 + b21x1)xp+1
1

dx1
dt

+
A1b12

(x∗1)pr2

x2 − x∗2
(Kp

1 + b12x2)xp+1
2

dx2
dt

(24)

=
A2b21
(x∗2)p

1

(Kp
2 + b21x1)(Kp

1 + b12x2)

x1 − x∗1
xp1

[A1(Kp
1 + b12x2)− xp1]

+
A1b12
(x∗1)p

1

(Kp
2 + b21x1)(Kp

1 + b12x2)

x2 − x∗2
xp2

[A2(Kp
2 + b21x1)− xp2] .

Note that the equilibrium relations imply that

A1
Kp

1 + b12x
∗
2

(x∗1)p
= 1, A2

Kp
2 + b21x

∗
1

(x∗2)p
= 1. (25)

Consequently, by substituting (25) into (24), one may obtain by rearranging terms
that

·
V1 =

A2b21
(x∗2)p

1

(Kp
2 + b21x1)(Kp

1 + b12x2)

x1 − x∗1
xp1

·
[
A1(Kp

1 + b12x2)− xp1A1
Kp

1 + b12x
∗
2

(x∗1)p

]
+
A1b12
(x∗1)p

1

(Kp
2 + b21x1)(Kp

1 + b12x2)

x2 − x∗2
xp2

·
[
A2(Kp

2 + b21x1)− xp2A2
Kp

2 + b21x
∗
1

(x∗2)p

]
=
A2b21
(x∗2)p

1

(Kp
2 + b21x1)(Kp

1 + b12x2)

1

xp−11

(
1− x∗1

x1

)
A1K

p
1

[
1−

(
x1
x∗1

)p]
+
A1b12
(x∗1)p

1

(Kp
2 + b21x1)(Kp

1 + b12x2)

1

xp−12

(
1− x∗2

x2

)
A2K

p
2

[
1−

(
x2
x∗2

)p]
+

A2b21A1b12
(Kp

2 + b21x1)(Kp
1 + b12x2)

x1 − x∗1
xp1

1

(x∗2)p−1

[
x2
x∗2
−
(
x1
x∗1

)p]
+

A2b21A1b12
(Kp

2 + b21x1)(Kp
1 + b12x2)

x2 − x∗2
xp2

1

(x∗1)p−1

[
x1
x∗1
−
(
x2
x∗2

)p]
= T1 + T2 + T3 + T4.
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By (15), T1 ≤ 0 and T2 ≤ 0, with equality if and only if x1 = x∗1 and x2 = x∗2,
respectively. We note also that

T3 + T4 =
A2b21A1b12

(Kp
2 + b21x1)(Kp

1 + b12x2)

1

(x∗1x
∗
2)p−1

E,

with

E =

(
1− x∗1

x1

)(
x∗1
x1

)p−1 [
x2
x∗2
−
(
x1
x∗1

)p]
+

(
1− x∗2

x2

)(
x∗2
x2

)p−1 [
x1
x∗1
−
(
x2
x∗2

)p]
=
x2
x∗2

(
1− x∗1

x1

)[(
x∗1
x1

)p−1
− 1

]
+
x1
x∗1

(
1− x∗2

x2

)[(
x∗2
x2

)p−1
− 1

]

+ 2− x2x
∗
1

x∗2x1
− x1x

∗
2

x∗1x2

=
x2
x∗2

(
x∗1
x1

)p−1(
1− x∗1

x1

)[
1−

(
x1
x∗1

)p−1]

+
x1
x∗1

(
x∗2
x2

)p−1(
1− x∗2

x2

)[
1−

(
x2
x∗2

)p−1]
+ 2− x2x

∗
1

x∗2x1
− x1x

∗
2

x∗1x2

≤ 0,

since the first two terms are negative by (15), while the third one is negative by

AM–GM inequality. It then follows that T3 + T4 ≤ 0, and consequently
·
V1 ≤ 0,

with equality if and only if x1 = x∗1 and x2 = x∗2. Since E∗2 is the only invariant set

in M =

{
(x1, x2);

·
V 1(x1, x2) = 0

}
, it follows by LaSalle’s invariance theorem that

E∗2 is globally asymptotically stable in (0,∞)× (0,∞).

We shall now observe that a similar conclusion can be reached by using V2 instead
of V1. To this purpose, let us note that in this situation V2 is given by

V2(x1, x2) =
b21
r1A1

∫ x1

x∗
1

θ − x∗1
(Kp

2 + b21θ)θ
dθ +

b12
r2A2

∫ x2

x∗
2

θ − x∗2
(Kp

1 + b12θ)θ
dθ.

The evalution of the derivative of V2 along the solutions of (12) gives

·
V2 =

b21
r1A1

x1 − x∗1
(Kp

2 + b21x1)x1

dx1
dt

+
b12
r2A2

x2 − x∗2
(Kp

1 + b12x2)x2

dx2
dt

=
b21(x1 − x∗1)

A1(Kp
2 + b21x1)(Kp

1 + b12x2)
[A1(Kp

1 + b12x2)− xp1]

+
b12(x2 − x∗2)

A2(Kp
2 + b21x1)(Kp

1 + b12x2)
[A2(Kp

2 + b21x1)− xp2] .

Using (25), it is seen that

·
V2 =

b21(x1 − x∗1)

A1(Kp
2 + b21x1)(Kp

1 + b12x2)

[
A1(Kp

1 + b12x2)− xp1A1
Kp

1 + b12x
∗
2

(x∗1)p

]
+

b12(x2 − x∗2)

A2(Kp
2 + b21x1)(Kp

1 + b12x2)

[
A2(Kp

2 + b21x1)− xp2A2
Kp

2 + b21x
∗
1

(x∗2)p

]
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=
b21(x1 − x∗1)

A1(Kp
2 + b21x1)(Kp

1 + b12x2)

·
{
Kp

1A1

[
1−

(
x1
x∗1

)p]
+A1b12

[
x2 − x∗2

(
x1
x∗1

)p]}
+

b12(x2 − x∗2)

A2(Kp
2 + b21x1)(Kp

1 + b12x2)

·
{
Kp

2A2

[
1−

(
x2
x∗2

)p]
+A2b21

[
x1 − x∗1

(
x2
x∗2

)p]}
=

b21K
p
1x1

(Kp
2 + b21x1)(Kp

1 + b12x2)

(
1− x∗1

x1

)[
1−

(
x1
x∗1

)p]
+

b12K
p
2x2

(Kp
2 + b21x1)(Kp

1 + b12x2)

(
1− x∗2

x2

)[
1−

(
x2
x∗2

)p]
+

b12b21x
∗
1x
∗
2

(Kp
2 + b21x1)(Kp

1 + b12x2)

(
x1
x∗1
− 1

)[
x2
x∗2
−
(
x1
x∗1

)p]
+

b12b21x
∗
1x
∗
2

(Kp
2 + b21x1)(Kp

1 + b12x2)

(
x2
x∗2
− 1

)[
x1
x∗1
−
(
x2
x∗2

)p]
= T1 + T2 + T3 + T4.

By (15), it is seen that T1 ≤ 0 and T2 ≤ 0, with inequality if and only if x1 = x∗1
and x2 = x∗2, respectively. Also,

T3 + T4 =
b12b21x

∗
1x
∗
2

(Kp
2 + b21x1)(Kp

1 + b12x2)

·

{(
1− x∗1

x1

)[
x2
x∗2

x1
x∗1
−
(
x1
x∗1

)p+1
]

+

(
1− x∗2

x2

)[
x1
x∗1

x2
x∗2
−
(
x2
x∗2

)p+1
]}

=
b12b21x

∗
1x
∗
2

(Kp
2 + b21x1)(Kp

1 + b12x2)
E1,

where

E1 =
x1
x∗1

(
1− x∗1

x1

)[
1−

(
x1
x∗1

)p]
+
x1
x∗1

(
1− x∗1

x1

)(
x2
x∗2
− 1

)
+
x1
x∗1

(
1− x∗1

x1

)[
1−

(
x1
x∗1

)p]
+
x2
x∗2

(
1− x∗2

x2

)(
x1
x∗1
− 1

)
=

(
x1
x∗1

)2(
1− x∗1

x1

)[
1−

(
x1
x∗1

)p−1]
+

(
x2
x∗2

)2(
1− x∗2

x2

)[
1−

(
x2
x∗2

)p−1]

−
(
x1
x∗1
− x2
x∗2

)2

.

By (15), it follows that E1 ≤ 0, with equality if and only if x1 = x∗1 and x2 = x∗2
(if p > 1) and if and only if x1

x∗
1

= x2

x∗
2

(if p = 1). Since the previous remarks yield

that T1 ≤ 0 with equality if and only if x1 = x∗1, T2 ≤ 0 with equality if and only
if x2 = x∗2, and T3 + T4 ≤ 0, with equality if and only if x1 = x∗1 and x2 = x∗2 (if

p > 1) and if and only if x1

x∗
1

= x2

x∗
2

(if p = 1), it follows that
·
V2 ≤ 0, with equality

if and only if x1 = x∗1 and x2 = x∗2. The rest of the argument is similar to the one
displayed above, establishing once again the global stability of E∗2 .
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[27] C. Wolin and L. Lawlor, Models of facultative mutualism: Density effects, Am. Nat., 124

(1984), 843–862.

Received January 09, 2015; Accepted June 09, 2015.

E-mail address: v.p.georgescu@gmail.com

E-mail address: hongzhang@ujs.edu.cn

E-mail address: daniel.maxin@valpo.edu

http://dx.doi.org/10.1086/284320
mailto:v.p.georgescu@gmail.com
mailto:hongzhang@ujs.edu.cn
mailto:daniel.maxin@valpo.edu

	1. Introduction
	2. A mutualistic model with restricted growth rates
	3. Mutualistic models with generalized logistic growth
	4. Conclusions
	Acknowledgments
	Appendix A. Proof of Theorem 2.2
	Appendix B. Proof of Theorem 3.2
	Appendix C. Proof of Theorem 3.4
	REFERENCES

