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1. Introduction

Mathematical modeling addressing subtle demographic issues in both hu-
mans and animals has been the subject of intensive research [Kendall, 1949,
Pollard, 1997, Caswell and Weeks, 1986, Ianelli et al., 2005, and references
therein]. In spite of this effort, many important questions remain to be
resolved, including an identification of appropriate marriage or pairing func-
tions [Ianelli et al., 2005], an accounting for births outside established couples
(single mothers) [Milner and Yang, 2009], or an adequate modeling of aspects
that drive the frequency of divorces. It is this latter issue which we would
like to contribute to in this paper.

Divorce is a complex issue, influenced by a variety of factors that are dif-
ficult to comprehend. For example, the risk of marital dissolution in humans
is affected by such individual- or couple-level characteristics as the level of
education, home ownership, the presence of children, or husband’s income
and weeks worked [South and Lloyd, 1995, Wolcott and Hughes, 1999, and
references therein]. In animals, most of the research on species that form
pair bonds and hence are prone to divorces has been carried out on socially
monogamous birds [Choudhury, 1995, Jeschke and Kokko, 2008, and refer-
ences therein]. The analysis conducted by [Jeschke and Kokko, 2008], con-
sidering 128 species and 20 potential correlates of the divorce rate, suggested
that species with a high divorce rate tend to be ornamented and sexually
dichromatic, live colonially, form part-time rather than continuous partner-
ships, and have a high mortality rate.

Difficulty to comprehend divorce as a demographic process is one of
the reasons why most two-sex demographic models that account for pairs
assume the divorce rate to be constant [Hadeler et al., 1988, Berec and
Boukal, 2004, Maxin and Milner, 2009]. With the constant divorce rate
(all other model parameters being constant), populations undergo an expo-
nential growth [Hadeler et al., 1988]. An alternative has been to assume that
the divorce rate is a non-decreasing function of the total population density
[Castillo-Chavez and Huang, 1995]. There is a ‘social density’ argument for
the divorce rate to depend on the total population density. Simply put, the
divorce rate is assumed to be positively affected by the degree of urbanization
(humans) or coloniality (animals). Thus, larger populations mean more di-
vorces, but the argument does not seem to incorporate a competitive aspect.
With the divorce rate a non-decreasing function of the total population den-
sity (all other model parameters being constant), populations always attain
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a globally stable positive equilibrium [Castillo-Chavez and Huang, 1995].
However, the marriage or pairing process might have a competitive com-

ponent not only among singles but also between singles and couples. Simply
put, with an increasing amount of singles in the population, coupled individ-
uals might feel relatively safe should they contemplate a separation decision,
since the chances of finding a new (and potentially better) partner (relatively
quickly) are higher. Indeed, [South and Lloyd, 1995] concluded that the risk
of marital dissolution in humans is highest where “either wives or husbands
encounter an abundance of spouse alternatives”, presumably due to a higher
opportunity to meet and unite with a more attractive mate (whatever the
word ‘attractive’ may mean – see, e.g., the above list of preferred, individual-
level characteristics). An analogous marriage market characteristic has been
proposed for socially monogamous birds, although the available evidence is
so far only indirect. The ‘better option hypothesis’ states that divorce should
occur “when one member of a pair is able to improve its reproductive suc-
cess by obtaining a better-quality mate” [Choudhury, 1995]; an evidence for
this hypothesis has been set forth, e.g., for the great skua Catharacta skua
[Catry et al., 1997]. Assuming that the better option hypothesis is correct,
we should expect the divorce rate to increase with greater availability of un-
paired individuals in the population, in part because of a higher probability
that better-quality mates are present and in part because of the chances that
such mates will be relatively quickly located.

In this paper, we explore mathematical as well as biological implications
of the assumption that the divorce rate is positively affected by the amount of
single (i.e. unmarried/unpaired) individuals present in a human community
or an animal population, as a novel alternative to the previous studies assum-
ing that the divorce rate is either constant or a non-decreasing function of
the total population density. In other words, we assume that married/paired
individuals keep searching for potentially better unmarried/unpaired mates,
and hence that intra-sexual competition occurs between a married/paired
individual and an unmarried/unpaired individual. Descriptive evidence sug-
gests that many married persons indeed continue to search for a partner even
while married [South and Lloyd, 1995].

The paper is structured as follows. In Section 2, we develop a modifica-
tion of the two-sex demographic model introduced by [Hadeler et al., 1988]
that will include the divorce rate as an increasing function of the amount of
singles in the population. In Section 3, we show that this modification alters
the exponential behavior of the original model. In particular, the solutions
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now become bounded and a unique positive equilibrium exists. Section 4
introduces a specific example of the divorce rate as an increasing function
of the amount of singles in the population and proves that, in the case of
equal sex-related vital parameters, our model exhibits a supercritical Hopf
bifurcation and sustained oscillations. In addition, a numerical example is
given to show that this result extends also to the case of sex-dependent vital
rates. In the last section, we discuss our results and suggest possible future
avenues for the research related to the present topic.

2. Model formulation

Our main aim here is to explore how the positive effect of the amount of
singles in the population (referred to as the single-population effect here)
on the divorce rate may affect population dynamics. The simplest two-
sex model, without age structure but accounting for pairs, was analyzed
by [Hadeler et al., 1988]. This model, described below, is an extension of the
model introduced by [Kendall, 1949] and [Keyfitz, 1949].





F ′ = −µfF + (βγf + δ + µm)C −M(F,M),

M ′ = −µmM + (βγm + δ + µf )C −M(F, M),

C ′ = M(F, M)− (δ + µf + µm)C.

(1)

The meaning of the state variables and parameters is as follows:

• F , M and C are the densities of single females, single males and couples,
respectively,

• β is the per-couple birth rate,

• γf and γm are the probabilities that a newborn is a female or a male,
respectively (γf + γm = 1),

• µf and µm are the natural mortality rates for females and males, re-
spectively,

• δ is the divorce rate,

• M(F, M) is the pair formation rate.
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Mathematical demographers have not singled out so far any functional
form for the pair formation rate that would best resemble reality. However,
there are several commonly accepted features this function should satisfy (see
[Hadeler et al., 1988] and references therein):

• Non-negativity: M(F,M) ≥ 0 for every positive F and M ,

• Heterosexuality: M(0,M) = M(F, 0) = 0 for every positive F and M ,

• Monotonicity: M(F + F ′,M + M ′) ≥ M(F,M) for every positive F ,
M , F ′ and M ′,

• Degree-one homogeneity: M(λF, λM) = λM(F, M) for every positive
F , M and λ,

• Consistency: there is an α > 0 such that M(F,M) ≤ αF and
M(F, M) ≤ αM for every positive F and M .

The ‘heterosexuality’ condition says there should be no pairs formed in
the absence of a sex. The ‘monotonicity’ one indicates that there should not
be less couples formed if density of both single males and females increases.
The ‘degree-one homogeneity’ condition prescribes that if density of both fe-
male and male singles increases at the same rate we should expect a respective
increase in the pair formation rate. Finally, the ‘consistency’condition pre-
scribes that if one sex becomes numerous, the rate of pair formation is driven
solely by the density of the less abundant sex.

Examples of pair formation functions are (see e.g. [Hadeler et al., 1988]):

ρ min(F, M), ρF aM1−a with a ∈ (0, 1), 2ρ
FM

F + M
.

Note that the last function, to be used later on in this paper, satisfies all
the conditions listed above. In particular, the ‘consistency’ condition can be
inferred from

lim
F→∞

2ρ
FM

F + M
= 2ρM and lim

M→∞
2ρ

FM

F + M
= 2ρF.

[Hadeler et al., 1988] proved that every solution of model (1) is exponen-
tial, with growth rate λ given by the following eigenvalue problem:

M
(

βγf

µf + λ
− 1,

βγm

µm + λ
− 1

)
= µf + µm + δ + λ. (2)
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We use model (1) as a starting point for modeling the divorce rate with
the single-population effect. As this effect is likely quite difficult to measure
empirically, we will attempt to analyze the modified model without choosing
any specific form for the divorce rate as an increasing function of the amount
of singles in the population. Nevertheless, to push the model analysis a bit
further, we will provide an example of such a divorce rate, with the disclaimer
that, apart from several general biological restrictions, the chosen function
is not based on any real demographic data.

We now establish a set of conditions that our divorce function δ(F, M)
should satisfy. These conditions are due mostly to biological reasons while
some are technical, to facilitate a later analysis of the Hopf bifurcation. We
assume that the single-population effect on the divorce rate has two basic
characteristics:

• An increase in the overall density of singles in the population should
imply an increase in the divorce rate,

• For a constant density of singles, a higher divorce rate should occur
when there is a greater imbalance between the densities of unpaired
females and males.

It is important to point out that we assume the divorce function δ(F, M)
should always satisfy the first condition first. The second condition is im-
posed when F and M change so that F + M stays constant. This is due
to the fact that, for the same number of singles, F + M , a greater pressure
on divorce should occur if F 6= M . We need to rank these two conditions
since they can be conflicting in the sense that a higher difference in the single
males and females may occur for a smaller density of singles, i.e.

|F1 −M1| > |F2 −M2| and F1 + M1 < F2 + M2.

With these considerations, the divorce function δ is assumed to satisfy the
following properties:

(i) δ(F, M) > 0 for every F > 0 and M > 0,

(ii) δ(0, 0) = δ0 > 0 and this will be the baseline divorce rate in the absence
of singles,

(iii) ∂δ
∂F

> 0, ∂δ
∂M

> 0 for every F ≥ 0 and M ≥ 0,
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(iv) δ(F, M) ≥ δ
(

F+M
2

, F+M
2

)
for every F > 0 and M > 0,

(v) δ is continuously differentiable on [0,∞)× [0,∞).

Later in this paper, we will assume a specific form for δ(F,M). Note
that if we consider a polynomial approximation for δ(F, M), the linear case
will not satisfy condition (iv). Indeed, suppose δ(F,M) = δ0 + b1F + b2M .
Condition (iv) then becomes

b1F + b2M > (b1 + b2)
F + M

2
⇔ (b1 − b2)(F −M) > 0

which is clearly not true for every F > 0 and M > 0. The next logical step is
to consider a second degree polynomial and, in this case, there are examples
which satisfy all the conditions stated above. In the general case,

δ(F,M) = δ0 + b1F + b2M + c0F
2 + c1FM + c2M

2

with b1, b2, c0, c1 and c2 positive. This is the form to be used later on,
with some additional technical assumptions on the coefficients designed to
simplify the calculations.

The two-sex demographic model we are going to analyze thus becomes:





F ′ = −µfF + (βγf + δ(F,M) + µm)C −M(F,M),

M ′ = −µmM + (βγm + δ(F, M) + µf )C −M(F,M),

C ′ = M(F, M)− [δ(F, M) + µf + µm]C.

(3)

3. General model analysis

Just as in the case with constant divorce rate [Hadeler et al., 1988], the
female and male net reproductive numbers are

Rf ≡ βγf

µf

and Rm ≡ βγm

µm

,

respectively. However, contrary to model (1), our model (3) admits bounded
solutions and a unique interior equilibrium, for suitable choices of δ and M.
We state these results in the following propositions:
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Proposition 3.1. (Extinction equilibrium)
If

Rf < 1, or Rm < 1, or M(Rf − 1,Rm − 1) < δ0 + µf + µm

then the extinction equilibrium is globally asymptotically stable.

Proof. The proof of this proposition follows the technique elaborated in
[Maxin and Milner, 2009] and we only give a brief outline here. The original
system (3) can be transformed into an equivalent one that follows the dy-
namics of total females, total males and couples, i.e. x = F + C, y = M + C
and C:





x′ = −µfx + βγfC,

y′ = −µmy + βγmC,

C ′ = M(x− C, y − C)− [δ(x− C, y − C) + µf + µm]C.

(4)

Note that system (4) is bounded from above by an equivalent exponential
two-sex model developed by [Hadeler et al., 1988] where δ(x − C, y − C) is
replaced by δ0. The eigenvalue problem in that case is

M
(

βγf

µf + λ
− 1,

βγm

µm + λ
− 1

)
= δ0 + µf + µm + λ.

This equation, under the conditions stated in the proposition, necessarily
has a negative root λ < 0 which shows that the solutions of the bounding
system converge to zero [Hadeler et al., 1988]. In turn, this leads to the
global stability of the extinction equilibrium.

¤
Note that any of the three conditions stated in the previous proposition, if

satisfied, is sufficient to cause population extinction, irrespectively of validity
of the other two. In biological terms, the extinction equilibrium is globally
stable if at least one of the following conditions is satisfied: (i) the female net
reproductive number falls below 1, (ii) the male net reproductive numbers
falls below 1, (iii) the new pairs are formed at a rate lower than the rate at
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which the established couples disappear. Figures 1, 2 and 3 provide three
examples to illustrate these three possibilities of population extinction. In
all these examples we used the following simplified divorce rate with the
single-population effect

δ(F,M) = [b(F + M) +
√

δ0]
2

and the harmonic mean version of the pair formation function

M(F, M) = 2ρ
FM

F + M
.

Proposition 3.2. (Interior equilibrium)
If

Rf > 1, Rm > 1 and M(Rf − 1,Rm − 1) > δ0 + µf + µm

then the extinction equilibrium is unstable. In addition, system (4) has a
unique interior equilibrium (x∗, y∗, C∗) and its solutions are bounded for all
time t provided that, along with the above conditions,

lim
t→∞

M(F, M)

δ(F, M)
< ∞ and

lim
C→∞

δ[C(Rf − 1), C(Rm − 1)] > M(Rf − 1,Rm − 1)− (µf + µm).

Proof. To prove that the extinction equilibrium is unstable we use the
approach adopted in [Castillo-Chavez and Huang, 1995]. We consider the
following function

ξ(t) = min

{
µfx(t)

βγf

,
µmy(t)

βγm

, C(t)

}

and prove that it is bounded away from zero.
Given the conditions in the proposition and the smoothness assumptions

we have that there exists a positive value (x0, y0, C0), with x0 > C0 and
y0 > C0, such that

M(Rf − 1,Rm − 1) > δ(x0 − C0, y0 − C0) + µf + µm.

We now assume that there exists a fixed time t0 such that

x(t0)− C(t0) < x0 − C0 and y(t0)− C(t0) < y0 − C0.
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It follows that if ξ(t0) is either of the first two terms then either x′(t0) or
y′(t0) is positive. Consider now the case

ξ(t0) = C(t0)

which translates into

x(t0)

C(t0)
> Rf and

y(t0)

C(t0)
> Rm.

Then,

C ′(t0) > [M (Rf − 1,Rm − 1)− δ(x(t0)− C(t0), y(t0)− C(t0))−

−µf − µm] C(t0) >

> [M (Rf − 1,Rm − 1)− δ(x0 − C0, y0 − C0)− µf − µm] C(t0) > 0.

This means that if (x(t), y(t), C(t)) is sufficiently close to (0, 0, 0) then

lim inf
ε→0

ξ(t + ε)− ξ(t)

ε
> 0. (5)

This shows that the extinction equilibrium is unstable.
To show the existence of an interior equilibrium (x∗, y∗, C∗), note that

x∗ = RfC
∗, y∗ = RmC∗.

From the third equation in system (4) we obtain

M (Rf − 1,Rm − 1) = δ [C∗(Rf − 1), C∗(Rm − 1)] + µf + µm.

Since the right-hand side is increasing in C∗ it follows that, under the condi-
tions of this proposition, there exists a unique positive C∗ that satisfies this
equality.

We now show that solutions of system (4) are bounded from above for all
time t, under the conditions stated in the proposition. Note, from (5), that
x(t), y(t) and C(t) are bounded from below. Suppose

x(t) > x, y(t) > y, and C(t) > C.
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It follows, from (3), that

F ′ > −µfF + (βγf + δ0 + µm)C − αF.

Integrating this inequality we obtain

F (t) >
(βγf + δ0 + µm)C

α + µf

+

[
F0 − (βγf + δ0 + µm)C

α + µf

]
e−(α+µf )t.

This shows that F (t) is bounded from below, i.e.

F (t) > F where F = min

{
F0,

(βγf + δ0 + µm)C

α + µf

}
.

Using a similar argument we have that M(t) is bounded from below as well:

M(t) > M where M = min

{
M0,

(βγm + δ0 + µf )C

α + µm

}
.

Finally, integrating the last equation in system (3) we obtain:

C(t) = C0e
− ∫ t

0 [δ(F,M)+µf+µm]dτ +

∫ t

0
M(F, M)e

∫ τ
0 [δ(F,M)+µf+µm]dσdτ

e
∫ t
0 [δ(F,M)+µf+µm]dτ

(6)

Since
M(F, M) > M(F ,M) and δ(F, M) > δ(F ,M)

we have that
∫ t

0

[δ(F, M) + µf + µm]dτ >

∫ t

0

[δ(F ,M) + µf + µm]dτ =

= [δ(F ,M) + µf + µm]t →∞ as t →∞.

Similarly,

∫ t

0

M(F, M)e
∫ τ
0 [δ(F,M)+µf+µm]dσdτ >

∫ t

0

M(F , M)e
∫ τ
0 [δ(F ,M)+µf+µm]dσdτ =

=
M(F ,M)

δ(F ,M) + µf + µm

[
e[δ(F ,M)+µf+µm]t − 1

] →∞ as t →∞.
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We can now prove that C(t) is bounded from above as follows:

lim
t→∞

C0e
− ∫ t

0 [δ(F,M)+µf+µm]dt = 0

and for the other term we can use the l’Hôpital’s rule as follows:

lim
t→∞

∫ t

0
M(F, M)e

∫ τ
0 [δ(F,M)+µf+µm]dσdτ

e
∫ t
0 [δ(F,M)+µf+µm]dτ

=

= lim
t→∞

M(F,M)e
∫ t
0 [δ(F,M)+µf+µm]dτ

e
∫ t
0 [δ(F,M)+µf+µm]dτ [δ(F, M) + µf + µm]

=

= lim
t→∞

M(F,M)

δ(F,M) + µf + µm

< lim
t→∞

M(F,M)

δ(F,M)
< ∞.

Denoting by C̄ the upper bound of C(t), we return to (4) and, using a
similar argument, we have that x(t) and y(t) are also bounded from above,
i.e.

x(t) ≤ max

{
x0,

βγf

µf

C̄

}
, and y(t) ≤ max

{
y0,

βγm

µm

C̄

}
.

¤
In Fig. 4, we provide a numerical example to illustrate this proposition:
The last two conditions stated in Proposition 3.2. can be interpreted

biologically in the following way. As in the condition

lim
t→∞

M(F, M)

δ(F, M)
< ∞

time figures implicitly through F (t) and M(t), and limiting values of F and
M depend on parameter values, this condition essentially means that the
pair formation rate should not be infinitely large and/or the divorce rate
infinitely small, conditions that are reasonable both in humans and animals.
The other condition,

lim
C→∞

δ[C(Rf − 1), C(Rm − 1)] > M(Rf − 1,Rm − 1)− (µf + µm)

actually introduces a form of negative density dependence into model (3).
Simply put, for high enough densities of singles the rates of processes that
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cause pair disappearance (divorces plus deaths within couples) exceed the
rate at which new couples are being formed. This is akin to the effect of
large population densities in the logistic equation, where large population
densities cause the mortality rate to eventually exceed the birth rate.

We conclude this section by noting that the harmonic mean function for
the pair formation rate and the quadratic function for the divorce rate satisfy
these two conditions . Indeed, with

M(F,M) = 2ρ
FM

F + M

and
δ(F,M) = δ0 + b1F + b2M + c0F

2 + c1FM + c2M
2

we have

M(F,M)

δ(F, M)
<

2ρ

b1 + b2

and lim
C→∞

δ[C(Rf − 1), C(Rm − 1)] = ∞.

4. Hopf Bifurcation and sustained oscillations

In this section, we show that model (3) admits a Hopf bifurcation around
the interior equilibrium. In bifurcation theory, a Hopf bifurcation is a lo-
cal bifurcation around an equilibrium. As a selected bifurcation parameter
varies, the equilibrium loses stability when the linearized system exhibits
a pair of conjugate eigenvalues crossing the imaginary axis. Under certain
general assumptions, a limit cycle emerges from the equilibrium. Textbook
examples are given by predator-prey dynamics described by the Rosenzweig-
MacArthur model [Rosenzweig and MacArthur, 1969], three or more species
competing for the same resource [Gilpin, 1975] and the discrete-time logistic
equation [May, 1974, 1976].

We choose the divorce rate without the single-population effect, δ0, as our
bifurcation parameter. In what follows, we are going to perform a bifurcation
analysis in the case of equal sex-related vital parameters, i.e. F (t) = M(t) for
all time t. This allows us to reduce model (3) to a two-dimensional system.
We will also provide a numerical example for the general case F (t) 6= M(t) to
illustrate that sustained oscillations are possible in the more realistic situation
of sex-dependent vital rates.

Assuming µf = µm = µ, γf = γm = 1
2

and F (0) = M(0), it follows that
F (t) = M(t) for all time t and model (3) thus reduces to the following planar
system:
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F ′ = −µF + (β
2

+ d(F ) + µ)C − ρF,

C ′ = ρF − [d(F ) + 2µ]C.
(7)

where ρ = M(1, 1) and we used the fact that M(F, F ) = FM(1, 1). We also
denoted d(F ) = δ(F, F ).

The Jacobian of (7) is

J =

[ −µ− ρ + d′(F )C β
2

+ d(F ) + µ
ρ− d′(F )C −d(F )− 2µ

]
,

with
Tr(J) = d′(F )C − d(F )− 3µ− ρ,

det J = µ[d(F ) + 2µ + ρ]− ρ
β

2
+ d′(F )C

(
β

2
− µ

)
.

Proposition 4.1. The extinction equilibrium is stable if

R =
ρ

(
β
2µ
− 1

)

δ0 + 2µ
< 1.

Proof. Since there is no singularity at the origin, the conclusion follows
immediately from evaluating the trace and the determinant of the Jacobian
matrix at (0, 0):

Tr(J) = −δ0 − 3µ− ρ < 0,

det J = µ(δ0 + 2µ + ρ)− ρ
β

2
> 0.

where positivity of det J follows from the condition stated in the proposi-
tion. Since the trace and the determinant are the sum and the product of
the corresponding eigenvalues, respectively, the eigenvalues must both have
negative real part. Consequently, the extinction equilibrium must be locally
asymptotically stable.

¤
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Proposition 4.2. If R > 1 the extinction equilibrium is unstable. In addi-
tion, if

lim
F→∞

d(F ) > ρ

(
β

2µ
− 1

)
− 2µ

there exists a unique interior equilibrium (F ∗, C∗) which is locally asymptot-
ically stable if

F ∗d′(F ∗) <

(
β

2µ
− 1

) (
ρβ

2µ
+ µ

)

and unstable otherwise.

Proof. First note that R > 1 implies β
2µ

> 1 (R is defined in Proposition

4.1.) as well. Note also that from the second equation of model (7) we have

C =
ρF

d(F ) + 2µ
,

while F is the solution of

ρ

(
β

2µ
− 1

)
= d(F ) + 2µ.

Since R > 1 we have that

ρ

(
β

2µ
− 1

)
> δ0 + 2µ.

Combining the fact that d(F ) is increasing with the first condition stated in
the proposition, the equation for F has a unique positive solution

F ∗ = d−1

[
ρ

(
β

2µ
− 1

)
− 2µ

]
,

whereby

C∗ =
F ∗

β
2µ
− 1

.

Evaluating the Jacobian J at F ∗ and C∗ we obtain the following trace and
determinant:

Tr(J) = d′(F ∗)C∗ − ρβ

2µ
− µ,
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det J = d′(F ∗)C∗
(

β

2
− µ

)
> 0.

Therefore, the interior equilibrium is locally asymptotically stable if
Tr(J) < 0, that is, if

d′(F ∗)C∗ <
ρβ

2µ
+ µ,

which is equivalent to

F ∗d′(F ∗) <

(
β

2µ
− 1

)(
ρβ

2µ
+ µ

)
.

¤
Since Tr(J) can be zero we have the possibility of a Hopf bifurcation. We

choose the divorce rate δ0 without the single-population effect as a bifurcation
parameter. In order to study existence and nature of this bifurcation it is
necessary to compute the bifurcation value of δ0, i.e. the value that satisfies
the equation Tr(J) = 0 when the pair of conjugate complex eigenvalues
cross the imaginary axis. In order to simplify the calculations, we adopt
several technical assumptions on the parameters of d(F ). Using the general
quadratic form for the divorce function,

δ(F, M) = δ0 + b1F + b2M + c0F
2 + c1FM + c2M

2,

we have that

d(F ) = δ(F, F ) = δ0 + (b1 + b2)F + (c0 + c1 + c2)F
2.

Since solving for the bifurcation value of δ0 requires solving a quadratic equa-
tion, it is much easier to use a function d(F ) that is a square of a linear
function. To this end, denoting a = c0 + c1 + c2, we impose the condition

b1 + b2 = 2
√

aδ0.

This makes d(F ) the square of a linear function,

d(F ) =
(√

aF +
√

δ0

)2

.

While this additional constraint is somewhat artificial, it should not af-
fect our conclusions since the single-population effect on the divorce rate is
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presumably very small and all the coefficients of d(F ) (except δ0) are hence
presumably very small as well. Actually, it is quite reasonable to assume
small values for these coefficients since, otherwise, the effect of singles on the
divorce rate could be overestimated, especially for small densities of singles.

The following proposition shows that under certain conditions, a super-
critical Hopf bifurcation occurs. This means that, as the bifurcation param-
eter δ0 increases past its bifurcation value, the interior equilibrium loses its
stability and a unique stable limit cycle emerges.

Proposition 4.3. The ‘one-sex’ system (7) admits a supercritical Hopf bi-
furcation and sustained oscillations.

Proof. Denoting A = β
2µ

, a Hopf bifurcation will occur if Tr(J) = 0 when
the pair of complex eigenvalues cross the imaginary axis, i.e.

F ∗d′(F ∗) = (A− 1) (ρA+ µ) ,

where
F ∗ = d−1 [ρ(A− 1)− 2µ] .

Using our choice for d(F ), these two equations become

2
√

aF ∗(
√

aF ∗ +
√

δ0) = (A− 1) (ρA+ µ)

and

F ∗ =

√
1

a
[ρ (A− 1)− 2µ]−

√
δ0

a
.

Substituting F ∗ in the first equation we obtain the bifurcation value δH
0 for

δ0:

√
δH
0 =

ρ
2
(A− 1) (2−A)− µ

2
(A+ 1)− µ√

ρ (A− 1)− 2µ
.

As A > 1 for the interior equilibrium to exist, a straightforward calculation
shows that

d

dδ0

(Tr(J)) = − 1

A− 1

(
2aF ∗
√

aδ0

+ 1

)
< 0,

which means that δH
0 must be positive for a Hopf bifurcation to occur. To

ensure that δH
0 is positive the following condition must be satisfied:

µ

ρ
<

(A− 1) (2−A)

A+ 3
. (8)
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This means that the net reproductive number A needs to satisfy

1 < A < 2;

this is a necessary condition for a positive bifurcation value and hence for a
possibility of sustained oscillations in population densities to occur. Further-
more, condition (8) represents a lower bound on ρ and an upper bound on
µ, together with the existence condition on the interior equilibrium, i.e.

R =
ρ (A− 1)

δ0 + 2µ
> 1.

To see whether the Hopf bifurcation is subcritical or supercritical, we cal-
culate the first Lyapunov coefficient corresponding to this bifurcation using
a formula found in various books such as [Perko, 2001]. First, we introduce
the following parameter:

ε0 = δH
0 − δ0

and replace δ0 by δH
0 − ε0. Now, the bifurcation parameter is ε0 and its

bifurcation value is εH
0 = 0. The equilibrium values for ε0 = 0 are

F ∗
0 =

1

2
√

a

[
(A− 1) (ρA+ µ)√

ρ (A− 1)− 2µ

]

and

C∗
0 =

1

2
√

a

[
ρA+ µ√

ρ (A− 1)− 2µ

]
.

We now perform the following coordinate change to place the equilibrium to
the origin:

F = x + F ∗
0 and C = y + C∗

0 .

The new system is





x′ = −(µ + ρ)(x + F ∗
0 ) +

{
β
2

+ [
√

a(x + F ∗
0 ) +

√
δH
0 ]2 + µ

}
(y + C∗

0),

y′ = ρ(x + F ∗
0 )−

{
[
√

a(x + F ∗
0 ) +

√
δH
0 ]2 + 2µ

}
(y + C∗

0).

(9)
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After several rearrangements of the terms we obtain the following form for
(9):





x′ = mx + ny + f(x, y),

y′ = px + qy + g(x, y),
(10)

with

A =

[
m n
p q

]
=

[
ρ (A− 1) (A− 1) (µ + ρ)

−ρ (A− 1)− µ −ρ (A− 1)

]

and

f(x, y) = (a20x
2 + a11xy + a02y

2) + (a30x
3 + a21x

2y + a12xy2 + a03y
3),

g(x, y) = (b20x
2 + b11xy + b02y

2) + (b30x
3 + b21x

2y + b12xy2 + b03y
3),

where

a20 = aC∗
0 , a11 = 2

√
a(
√

aF ∗
0 +

√
δH
0 ), a02 = 0,

a30 = 0, a21 = a, a12 = 0, a03 = 0,

b20 = −aC∗
0 , b11 = −2

√
a(
√

aF ∗
0 +

√
δH
0 ), b02 = 0,

b30 = 0, b21 = −a, b12 = 0, b03 = 0.

Note that, as expected, m + q = 0 and

∆ = mq − np = µ (A− 1) (ρA+ µ) > 0.

Following [Perko, 2001], the first Lyapunov coefficient τ is given by the fol-
lowing formula

τ =
−3π

2n∆3/2

{[
mp

(
a2

11 + a11b02 + a02b11

)
+ mn

(
b2
11 + a20b11 + a11b02

)
+

+p2 (a11a02 + 2a02b02)− 2mp
(
b2
02 − a20a02

)− 2mn
(
a2

20 − b20b02

)−
−n2 (2a20b20 + b11b20) +

(
np− 2m2

)
(b11b02 − a11a20)

]−
− (

m2 + np
)
[3 (pb03 − na30) + 2m (a21 + b12) + (pa12 − nb21)]

}
.

Although this expression is difficult to simplify, we are interested only in its
sign. To this end, we use a suitable substitution which will not shorten the
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expression but will allow us to establish the sign of τ . First, we introduce
the following notation:

k =
√

ρ(A− 1)− 2µ

and substitute

A =
k2 + 2µ

ρ
+ 1.

Then, the first Lyapunov coefficient is

τ =
−3π

2n∆3/2

a

2k2ρ2
(k2 + 2µ)T,

where

T = (µ2 + 2ρ2 + 11ρµ)k6 + (8µ3 + 38ρµ2 + 2ρ3 + 8ρ2µ)k4+

+(49ρµ3 + 7ρ3µ + 21µ4 + 35ρ2µ2)k2 + 14ρ2µ3 + 2ρ3µ2 + 30ρµ4 + 18µ5

which is clearly positive. Hence, τ < 0 and a unique stable limit cycle
bifurcates from the origin of (9) as ε0 increases from 0, or, equivalently, as δ0

decreases from δH
0 . This means the Hopf bifurcation is supercritical.

¤
Figure 5 illustrates Proposition 4.3. using d(F ) = (0.02F +

√
δ0)

2.
However, numerical simulations show that the possibility of sustained

oscillations goes beyond the assumption of sex-independent vital rates. In
Fig. 6 we provide a numerical example to indicate that sustained oscillations
are possible also in the general case of sex-dependent vital rates. The pa-
rameter values are selected for illustration purposes only and do not reflect
real data.

For plotting Fig. 6, we chose the following divorce rate (similar to the one
used in the bifurcation analysis earlier in this section):

δ(F, M) = [b(F + M) +
√

δ0]
2,

with b = 0.01. Note that the coefficient b that indicates the single-population
effect in the divorce rate does not affect the bifurcation value δH

0 . Its only
effect is on the actual values of the interior equilibrium. This means that the
possibility of sustained oscillations is independent on the magnitude of the
single-population effect. Furthermore, we exaggerated the difference between
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γf and γm and also between µf and µm for the sole purpose of showing a
clearer picture (in humans as well as many animal populations the sex ratio
at birth is close to 0.5 and µf < µm but with a smaller difference than the
one chosen above). The mortality rates and the birth rate we used to create
Figs 5 and 6 are close to the values obtained from U.S. 2000 Census data. In
that year, β = 0.07338, µf = 0.01258, and µm = 0.01350.

Remark 4.1. One of the original motivations in assuming that the divorce
rate depends increasingly on the population of singles was to capture the com-
petitive aspect in the pair formation process. It is interesting to note that sys-
tem (7) considered in this section resembles predator-prey dynamics where the
single population F acts as a predator and the couples C as a prey, with the
important distinction that the “predator” has a direct positive contribution to
the “prey” through the pair formation process. This, of course, does not hap-
pen in the classical Lotka-Volterra model. On the other hand, if the divorce
rate is a function of the total population density then in the “prey” equation
(equation for C) the expression in the square brackets increases with C for
any fixed female density F . In the predator-prey parallel we propose here this
can be viewed as an analogy with the logistic growth of prey, the mechanism
which is known to have a strong stabilizing effect on predator-prey dynam-
ics. Indeed, for the divorce rate dependent on the total population density,
a unique positive equilibrium of a model equivalent to ours (such as that of
[Castillo-Chavez and Huang, 1995] in which the birth rate would be kept con-
stant) would always be locally asymptotically stable; see also Conclusions.

Remark 4.2. With the divorce function used in Proposition 4.3., the stabil-
ity condition of the interior equilibrium established in Proposition 3.2., i.e.

F ∗d′(F ∗) <

(
β

2µ
− 1

)(
ρβ

2µ
+ µ

)
,

can be written as

√
δ0 >

ρ
2
(A− 1) (2−A)− µ

2
(A+ 1)− µ√

ρ (A− 1)− 2µ
.

Recall that in order to have a positive bifurcation value for δ0 it was necessary
that 1 < A < 2. On the other hand, if

A > 2
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we see from stability condition (8) that the interior equilibrium is always sta-
ble for any positive value of δ0 since the right-hand side in this condition is
negative. This means that to maintain dynamics in the model with sustained
oscillations the net reproductive number should not be too large. One possi-
ble explanation, related to the previous remark, is given by the singles’ dual
role of both “predators” through their influence on the divorce rate and of
“prey” through pair formation. If the net reproductive number is relatively
large there will always be enough pairs formed whose positive contribution to
the couples overcomes the single-population effect on the divorces that will
otherwise cause the oscillations.

Remark 4.3. One explanation for the ‘better option hypothesis’, described
in Introduction and [Choudhury, 1995], is given by the possibility that a low
reproductive fitness may compel the bird to look more actively for better op-
tions, i.e. single birds. This suggests that a, the parameter in d(F ) which
captures the single-population effect, may be negatively correlated with the net
reproductive number A. If this is the case then the equilibrium value

F ∗ =
1√
a

[√
ρ(A− 1)− 2µ−

√
δ0

]

is positively correlated with A. This means that a negative correlation between
the single-population effect and the reproductive fitness is in agreement with
the expected outcome that larger populations should occur for larger values of
A.

5. Conclusions

In this paper, we modified the classical exponential two-sex model [Kendall,
1949, Keyfitz, 1949, Hadeler et al., 1988] by assuming that the larger the
amount of singles in the population the higher is the divorce rate of estab-
lished couples. Although conceptual arguments supporting this assumption
are convincing – coupled individuals are prone to separation the more often
the higher are the chances of meeting and uniting with a more attractive
mate (the better option hypothesis) [Choudhury, 1995, South and Lloyd,
1995], which in turn is more likely to occur the larger is the amount of sin-
gles in the population, empirical data remain rare (though they already span
both humans and animals) [South and Lloyd, 1995, Catry et al., 1997]. That
is also why we avoid as much as possible to claim any specific formulation
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for the divorce function. A specific form of this function was only used in
the final section in order to push the model analysis forward a bit more.

With the single-population effect on the divorce rate, and under several
conditions on the vital parameters, we showed in this paper that the expo-
nential behavior of the classical two-sex model is altered as follows: the total
population density is bounded and a unique positive equilibrium exists. In
addition, using the divorce rate in the absence of singles as a bifurcation
parameter, we proved that in the case of equal sex-related vital parameters
the model exhibited a supercritical Hopf bifurcation and hence sustained os-
cillations are possible. More generally, we showed via numerical simulations
that even when the vital parameters differ with sex, the model solutions may
still attain a limit cycle.

Divorce appears to be one of the least studied demographic processes,
both empirically and in two-sex demographic models. In models, the divorce
rate is either assumed constant [Hadeler et al., 1988, Berec and Boukal,
2004, Maxin and Milner, 2009] or a non-decreasing function of the total
population density [Castillo-Chavez and Huang, 1995]. In the latter case,
all the other model parameters assumed constant, the divorce rate itself is
a source of negative density dependence and makes the respective two-sex
model a two-sex version of the logistic equation provided that δ(0) < δ∗ and
limT→∞ δ(T ) > δ∗, where T = M + F + 2C is the total population density
and δ∗ is the threshold divorce rate from the exponential two-sex model of
[Hadeler et al., 1988] below which a positive solution exists and above which
population extinction is the globally stable solution. A parallel argument ap-
plies also here, as precisely formulated in Proposition 3.2. This implies that
although the divorce rate is in both cases a source of negative density de-
pendence, its effect on population dynamics may differ. Specifically, whereas
the divorce rate as a function of the total population density causes the
population to always attain a globally stable positive equilibrium [Castillo-
Chavez and Huang, 1995], the divorce rate as a function of the amount of
singles also allows the population to oscillate around an unstable positive
equilibrium (this work).

Given that determinants of divorce in humans and birds, not to speak of
other taxa, are still relatively poorly known, the distinction in model out-
comes could serve as a working hypothesis on what marriage market charac-
teristic eventually drives the divorce rate – is it the total population density
or the amount of singles in the population? A way to discern between these
two hypotheses could be to analyze population dynamics of monogamous
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birds in an environment free of predators and with an abundance of food,
i.e. an environment where effects of negative density dependence in births
and deaths are negligible and where density-independent divorce rate would
imply exponential population growth [Hadeler et al., 1988]. If the population
is bounded we could argue that divorces may have a role in this bounded-
ness. In addition, if the population is found to oscillate in density then the
amount of singles in the population rather than the total population density
might be a competent driver of divorces. In this way, results of our model are
relevant in pattern-oriented modeling – they could supply a bulk of testable
hypotheses on what induces the divorce rate in humans and animals if os-
cillatory patterns of population trajectories were observed. We note that a
logistic two-sex model can also be obtained by considering non-linear birth
rate [Castillo-Chavez and Huang, 1995, Berec and Boukal, 2004] or non-linear
mortality rates [Maxin and Milner, 2009].

The two ‘competing hypotheses’ of the divorce rate can also be looked
at from a different perspective. As a matter of fact, [Castillo-Chavez and
Huang, 1995] did not provide any explanation – behavioral, social, economi-
cal, psychological, evolutionary or whatever – for the total population density
dependence of the divorce rate. They just employed a statistical observation
that in large urban areas the divorce rate is higher. From this perspective, the
total population density dependence hypothesis can be considered a proxi-
mate causation of divorce rate. On the contrary, the better option hypothesis
can be thought of as an ultimate causation of divorce rate, causing higher
divorce rates in densely populated areas and thus responsible for statistical
observations employed by [Castillo-Chavez and Huang, 1995].

There are several potential avenues for future research. First, related to
the above discussion of the total-population vs. single-population effects on
the divorce rate, the challenging issue is to try and quantify the effect on the
divorce rate of divorce drivers in general and of the amount of singles in the
population in particular. This is by no means an easy task and is akin to
the long-standing efforts to quantify the marriage or pair formation rate as
a function of the amount of single males and single females in the popula-
tion. For the latter, at least some qualitative features have been formulated
and perhaps an analogous and broadly accepted list could be composed for
the divorce rate as well (see the Model Formulation section of this paper).
Second, the model we analyzed in this paper can be modified in a number of
ways, to investigate impacts of a variety of other mechanisms known to affect
population demography. For example, one might be interested in the effects
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of negative density dependence in birth and/or death rates [Castillo-Chavez
and Huang, 1995, Maxin and Milner, 2009], Allee effects [Berec and Boukal,
2004, Courchamp et al., 2008], or a strong positive correlation between the
divorce rate and the mortality rate observed in monogamous birds [Jeschke
and Kokko, 2008]. In every case, modeling as well as empirical investigation
of divorce rates will certainly remain one of the key topics in population
demography.
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Figure legends:
Figure 1: Trajectories of model (3) showing the global stability of the

extinction equilibrium in the case Rf < 1. Parameter values: β = 0.05,
µf = 0.022, µm = 0.02, γf = 0.35, γm = 0.65, ρ = 0.36, δ0 = 0.0004,
b = 0.01, hence Rf = 0.8 and Rm = 1.63.

Figure 2: Trajectories of model (3) showing the global stability of the
extinction equilibrium in the case Rm < 1. Parameter values: β = 0.05,
µf = 0.012, µm = 0.04, γf = 0.35, γm = 0.65, ρ = 0.36, δ0 = 0.0004,
b = 0.01, hence Rf = 1.46 and Rm = 0.81.

Figure 3: Trajectories of model (3) showing the global stability of the
extinction equilibrium in the case M(Rf − 1,Rm − 1) < δ0 + µf + µm.
Parameter values: β = 0.05, µf = 0.012, µm = 0.02, γf = 0.35, γm =
0.65, ρ = 0.12, δ0 = 0.08, b = 0.01, hence Rf = 1.46, Rm = 1.62, and
M(Rf − 1,Rm − 1)− (δ0 + µf + µm) = −0.049.

Figure 4: Trajectories of model (3) showing the existence of a unique (and
this time also stable) interior equilibrium in the case Rf > 1, Rm > 1 and
M(Rf −1,Rm−1) > δ0 +µf +µm. Parameter values: β = 0.05, µf = 0.012,
µm = 0.02, γf = 0.35, γm = 0.65, ρ = 0.36, δ0 = 0.004, b = 0.004.

Figure 5: Trajectories of model (7) showing the stable limit cycle in the
F − C plane in the case of sex-independent vital rates. Parameter values:
β = 0.05, µ = 0.017, ρ = 0.36, δ0 = 0.0002, hence A = 1.47.

Figure 6: Trajectories of model (3) showing densities of single females,
single males and couples in a case of sex-dependent vital rates. These tra-
jectories approach a limit cycle and thus demonstrate sustained oscillations.
Parameter values: β = 0.05, µf = 0.012, µm = 0.02, γf = 0.35, γm = 0.65,
ρ = 0.46, δ0 = 0.0004, b = 0.01.
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