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ABSTRACT
Manymodels ofmutualismhave beenproposed and studied individ-
ually. In this paper,wedevelopageneral class ofmodels of facultative
mutualism that covers many of such published models. Using mild
assumptions on the growth and self-limiting functions, we establish
necessary and sufficient conditions on the boundedness of model
solutions and prove the global stability of a unique coexistence equi-
librium whenever it exists. These results allow for a greater flexibility
in the way each mutualist species can be modelled and avoid the
need to analyse any single model of mutualism in isolation. Our gen-
eralization also allows each of the mutualists to be subject to a weak
Allee effect. Moreover, we find that if one of the interacting species
is subject to a strong Allee effect, then the mutualism can overcome
it and cause a unique coexistence equilibrium to be globally stable.
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1. Introduction

A mutualism is an interaction between a pair of species that is beneficial for both parties
and that is commonly manifested as an increase in an individual’s capacity to grow, survive
or reproduce [16]. Mutualisms are many and varied [18], including associations between
pollinators and plants [31], seed dispersers and plants [26], mycorrhizae and plants [23],
and cleaner species and their hosts [9]. By degree of dependency, a mutualist can be clas-
sified as facultative when it benefits from the interaction yet can survive on its own, or
obligate when it requires an interaction as it is not able to survive without the other species.
Moreover, mutualisms can be protective when a species gets physical protection by the
other species (such as when clown fish hide in sea anemones) or resource-based when a
species receives a resource (such as when bees collect nectar). Most likely, it is because
of this diversity and complexity of mutualistic interactions that work on predatory and
competitive interactions has always dominated in ecology.
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A number of mathematical models have been proposed to describe mutualistic interac-
tions, starting with the familiar Lotka–Volterra model [31]. It is a legacy of this pioneering
mutualism model that a majority of its successors focus on facultative mutualisms, are
composed of two structurally identical equations and aim to prevent populations from
increasing without bounds as a result of reinforcing effects of their mutual benefits [17, 18,
31]. Once a stable coexistence equilibrium is shown to exist, a mathematical question of
biological interest that typically follows is establishing its uniqueness and/or global stabil-
ity. As one may imagine, looking for uniqueness and/or global stability of a coexistence
equilibrium in a mutualism model (but also in any other similarly complex model) is a
difficult task.

The high diversity of mutualistic interactions calls for a similar diversity of mathemat-
ical models [17, 18, 31]. For instance, the Lotka–Volterra mutualism model represents
the situation in which the per capita effects of a (facultative) mutualism are density
independent

x′
1 = r1x1

(
1 − x1

K1

)
+ r1b12

K1
x1x2 = r1x1

(
1 + b12x2

K1
− x1

K1

)
,

x′
2 = r2x2

(
1 − x2

K2

)
+ r2b21

K2
x1x2 = r2x2

(
1 + b21x1

K2
− x2

K2

)
.

(1)

On the contrary, Wolin and Lawlor [32] introduced the following model to accommodate
the situation in which a (facultative) mutualism has a higher per capita impact at higher
densities

x′
1 = r1x1 − r1x21

K1 + b12x2
= r1x1

(
1 − x1

K1 + b12x2

)
,

x′
2 = r2x2 − r2x22

K2 + b21x1
= r2x2

(
1 − x2

K2 + b21x1

)
.

(2)

In both models (1) and (2), ri is the intrinsic growth rate and Ki is the carrying capacity
of species, i=1,2 when alone. In addition, b12 and b21 are positive constants that scale
the beneficial effect of one species on the other. Hence, if one species is missing, the other
grows in a logistic fashion. However, the mutualistic association is manifested differently
in models (1) and (2), which translates into different signs of the interaction terms. In
particular, while model (1) is a special case of a general model

x′
1 = r1x1[f1(x1, x2) − a1(x1)],

x′
2 = r2x2[f2(x2, x1) − a2(x2)]

(3)

for some positive functions a1, a2, f1, f2, model (2) can rather be generalized as

x′
1 = r1x1[a1(x1) − f1(x1, x2)],

x′
2 = r2x2[a2(x2) − f2(x2, x1)].

(4)

It would certainly be a good move if the issues of uniqueness and/or global stability of a
coexistence equilibrium were resolved for some general classes of models of mutualism
such as these.
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In this direction, Georgescu and Zhang [12] formulated sufficient conditions for the
global stability of a unique coexistence equilibrium for a general model of mutualism, in
the form

x′
1 = a1(x1) + f1(x1)g1(x2),

x′
2 = a2(x2) + f2(x2)g2(x1),

(5)

under various trade-offs between monotonicity and sign conditions of the (not necessarily
positive) functions a1, a2, f1, f2, g1, g2 and their combinations. Note that model (5) also
includes models (1) and (2) as its special cases. Lyapunov functionals extending those of
[30] were used to explore global stability in this case. Georgescu et al. [13] further enlarged
applicability of the abstract functionals introduced in [12] to a model of mutualism with
restricted growth rates proposed in [14] and to the versions of models (1) and (2) with the
logistic growth rates replaced by the Richards ones.

Despite a variety of proposedmodels ofmutualism, there is still potential for developing
others. As we have already emphasized above, most models of mutualism assume a sym-
metry of the interaction effect. That is, the mutualistic effect is commonly modelled using
structurally identical equations [17, 18, 31], as is also exemplified by models (1) and (2).
Although this may suffice for certain systems, in other cases the mutualists have differ-
ent life histories, such as when representing a plant and an animal [31]. Not only may
interaction terms differ structurally for each mutualist, but also beneficial effects of mutu-
alism may impact different fitness components in each species. For instance, in the sea
anemone–anemone fish mutualism, waste ammonia from the fish feed the symbiotic algae
that are found in the anemone’s tentacles [22]. Similarly, by consuming parasitic bugs on
the zebras’ or rhinos’ skin, the oxpeckers acquire food and the zebras or rhinos get rid
of pests [4]. Last but not least, the spider crabs prefer shallow waters and seek algae that
would grow on their back. This way the crabs are camouflaged and thus more likely to
escape predation, while the algae obtain an extra resource which is another place to live at
[4]. Of course, the same fitness component may be affected in both mutualists, such as in
the case of brood-site pollination mutualism [25] or when some ants nest inside thorns of
trees of the genus Acacia; in exchange for shelter, the ants protect acacias from attack by
herbivores [15]. Therefore, any sufficiently general class of mutualism models should also
allow for equations that are structurally different and cover cases in which different fitness
components are affected in different species.

Apart from some exceptions such as [21], all published models of mutualism assume
that individual species grow in a logistic manner when alone. In the recent decades, how-
ever, biologists have started to acknowledge that populations may be subject to an Allee
effect, a concept originally studied by Allee [1, 2]. Allee effects occur when mean individ-
ual fitness declines with decreasing population density when the population is rare and
can occur due to a plethora of causes, the most prominent being enhanced difficulties of
individuals to find mates, escape predation or avoid inbreeding when population densities
become low [6, 7, 11, 29].

Allee effects can be classified as weak or strong. In both cases, the per capita population
growth rate declines with decreasing population density when the population is rare.Weak
Allee effects occur when, despite this decline, the per capita growth rate never becomes
negative in low-density populations [6, 29]. As with the logistic growth, populations always



342 D. MAXIN ET AL.

attain the carrying capacity, yet at a slower rate when rare. On the other hand, strong Allee
effects occurwhen the per capita growth rate becomes negative once the population density
falls below a critical value termed an Allee threshold [6, 29]. Populations above the Allee
threshold attain the carrying capacity, while those below the Allee threshold go extinct. For
instance, the population model

x′ = rx
( x
A

− 1
) (

1 − x
K

)
, 0 < A < K, (6)

exhibits a strong Allee effect with the Allee threshold A; populations with densities below
A go extinct, while those above A attain the carrying capacity K. An example of a model
with a weak Allee effect is provided by the following modification of the classical logistic
model:

x′ = rxp
(
1 − x

K

)
, p > 1. (7)

For p>1, the per capita growth rate f (x) = rxp−1(1 − x/K) is indeed positive and increas-
ing at small densities. Since there is no Allee threshold in this model, the Allee effect is
weak. If p=1, the model (7) represents the classical logistic equation. Other single-species
models of Allee effects have been proposed in [6, 8, 24].

An important role of mutualistic models such as the Lotka–Volterra one and many of
its successors is to propose generalizations that hold for many specific mutualistic interac-
tions. Ability to establish uniqueness and/or global stability of a coexistence equilibrium
for a general class of mutualism models is certainly a decent step in this direction. The
aim of this article is thus twofold. First, we propose a general class of models of facultative
mutualism that covers a broad set of existing mutualistic models, including Equations (1)
and (2), and allows for asymmetry of the mutual species effect (i.e. mutualistic effects need
not be modelled in the same way for each species) and/or populations subject to some
Allee effects. Second, we provide mathematical proofs for this class of models concern-
ing the boundedness of their solutions and the global stability of the unique coexistence
equilibrium whenever it exists.

The paper is organized as follows. In Section 2, we propose our general class of faculta-
tive models of mutualism and prove our main theoretical results. In Section 3, we provide
several biologically motivated examples to illustrate how our general results may apply to
specific models of mutualism. A discussion on the biological implications of our results as
well as on future research avenues is given in Section 4.

2. The general model

Before developing and analysing the models of mutualism, we first introduce a single-
species model which describes the dynamics of a species in the absence of mutualism. We
assume that the dynamics of each species in isolation is modelled as

x′ = rx[a(x) − f (x)], (8)
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where a and f are positive real-valued continuous functions, which shall be elaborated
upon later on. In what follows, a is to be interpreted as a growth function, and f as a self-
limiting function. We now introduce the following growth assumption:

(G) There exists K>0 such that a(x) − f (x) > 0 for x<K, a(x) − f (x) < 0 for x>K and
a(K) − f (K) = 0.

This ensures that the population approaches the carrying capacityK from every positive
initial density, and therefore covers both logistic-like population dynamics and dynamics
of a population subject to a weak Allee effect. This assumption will be modified later on
when treating strong Allee effects in mutualistic interactions.

2.1. Mutualisms that affect the self-limiting function

Let us now consider the following abstract model of a mutualistic interaction:

x′
1 = r1x1[a1(x1) − f1(x1, x2)],

x′
2 = r2x2[a2(x2) − f2(x2, x1)],

(9)

in which r1, r2 > 0, a1, a2 are positive functions continuously differentiable on R and f1, f2
are positive functions continuously differentiable on R

2. We shall also assume that the
expressions a1(x1) − f1(x1, 0) and a2(x2) − f2(x2, 0) satisfy the growth assumption (G)
with K1 and K2 as the respective single-species carrying capacities.

We now introduce the following consistency assumptions:

(C1) f1(x1, x2) is increasing in x1 and f2(x2, x1) is increasing in x2.
(C2) a1(x1)/f1(x1, x2) is strictly decreasing in x1 and a2(x2)/f2(x2, x1) is strictly decreas-

ing in x2.
(C3) a1(x1)/f1(x1,αx1) and a2(x2)/f2(x2,αx2) are eventually decreasing for all α > 0.

That is,

d
dx1

(
a1(x1)

f1(x1,αx1)

)
< 0 for x1 > M1,

d
dx2

(
a2(x2)

f2(x2,αx2)

)
< 0 for x2 > M2,

whereM1 andM2 are positive real numbers that may depend on α.

The common meaning of the assumptions (C1) and (C2) is that if one species is kept
constant, then the other should still follow a logistic-like or weak Allee effect growth in
which the ratio between the growth and self-limiting functions decreases as the population
density increases. The meaning of (C3) is somewhat similar, supposing this time that the
ratio between the population densities is kept constant. In particular, the assumption (C3)
has intentionally a weakermonotonicity property which allows our boundedness theorems
formulated and proved below to hold also for mutualism models including strong Allee
effects.
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We now define themutualism-specific assumption:

(M) f1(x1, x2) is decreasing in x2 and f2(x2, x1) is decreasing in x1.

Noting that f1 and f2 appear with negative signs in the model (9), the assumption (M)
characterizes the fact that the model (9) indeed represents a mutualistic interaction, since
an increase in the density of a population benefits the other species, for all population
densities.

Due to the assumption (C3), for all α > 0 there exist finite non-negative numbers
R1(α),R2(α) given by

R1(α) = lim
x1→∞

a1(x1)
f1(x1,αx1)

, R2(α) = lim
x2→∞

a2(x2)
f2(x2,αx2)

.

Due to the assumption (M), R1, R2 are increasing as functions of α, although they may
not necessarily be strictly increasing (it shall be observed later on that one or both of them
may even be identically 0). Also, by the assumption (G),R1(0) < 1 andR2(0) < 1.

The existence of a coexistence equilibrium E∗ of the model (9) can be characterized in
terms of a joint quantitative property ofR1 andR2, as follows.

Lemma 2.1: If the assumption (C3) holds for all positive x1 and x2 and there exists a
coexistence equilibrium E∗ of the model (9), then there is α > 0 such that R1(α) < 1 and
R2(1/α) < 1.

Proof: Let E∗ = (x∗
1, x

∗
2) be a coexistence equilibrium of the model (9). Because of that

a1(x∗
1)

f1(x∗
1, x

∗
2)

= 1,
a2(x∗

2)

f2(x∗
2, x

∗
1)

= 1.

Denoting α = x∗
2/x

∗
1, this yields

a1(x∗
1)

f1(x∗
1,αx

∗
1)

= 1,
a2(x∗

2)

f2(x∗
2,

1
α
x∗
2)

= 1,

and the conclusion follows using the assumption (C3). �

This result suggests a characterization ofwhether solutions of themodel (9) are bounded
through conditions imposed onR1 andR2.Wefirst establish the boundedness of solutions
of the model (9).

Theorem 2.2: Let the assumptions (C1) and (C3) hold. If there is α > 0 such thatR1(α) <

1 and R2(1/α) < 1, then solutions of the model (9) are uniformly bounded in a compact
region of the positive quadrant and there is a coexistence equilibrium E∗.

Proof: First, we shall prove that any solution that starts with positive initial conditions will
not have a limit point on any of the semi-axes. Due to (M) and (G), it follows that

x′
1 > r1x1[a1(x1) − f1(x1, 0)] > 0, x′

2 > r2x2[a2(x2) − f2(x2, 0)] > 0

provided that x1, x2 stay positive and under their corresponding carrying capacities. Con-
sequently, solutions starting with positive initial conditions cannot get too close to any of
the positive semi-axes and the system (9) is uniformly persistent.
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To show that the solutions are bounded from above, we consider the function

h(t) = max{αx1(t), x2(t)}.

For a given t>0, we have two possibilities.
Case 1. h(t) = αx1(t). Then x2(t) ≤ αx1(t) and, due to (M)

x′
1
x1

≤ r1f1(x1,αx1)
[

a1(x1)
f1(x1,αx1)

− 1
]
.

Since the expression inside the square brackets has limit R1(α) − 1 < 0, it follows that
x′
1/x1 < 0 for x1 large enough, say for x1 > M1.
Case 2. h(t) = x2(t). Then x1(t) ≤ (1/α)x2(t) and, due to (M)

x′
2
x2

≤ r2f2
(
x2,

1
α
x2
)[

a2(x2)
f2(x2, 1α x2)

− 1

]
.

Again, since the expression inside the square brackets has limitR2(1/α) − 1 < 0, it follows
that x′

2/x2 < 0 for x2 large enough, say for x2 > M2.
Even though αx1 and x2 are differentiable, the function h may not necessarily be

so for all t>0 (it is, however, continuous for all t ≥ 0). Specifically, h may not be dif-
ferentiable for values of t such that hx1(t) = x2(t). However, the following result [20,
Lemma 1.2.1] provides a condition for the monotonicity of continuous functions using
only Dini derivatives.

Lemma 2.3: Suppose that u ∈ C([t0, t0 + a),R) and the inequality Du(t) ≤ 0 holds for t ∈
[t0, t0 + a)\S,Dbeing anyDini derivative and S being an atmost countable subset of [t0, t0 +
a). Then u(t) is nonincreasing in t on [t0, t0 + a).

From the above discussion, it is seen that

D+h(t) < 0, whenever h(t) > M := max{αM1,M2},

where D+h(t) is the upper right Dini derivative of h, defined as

D+h(t) = lim sup
ε→0+

h(t + ε) − h(t)
ε

.

Consequently, h is uniformly bounded from above. Since h(t) := max{αx1(t), x2(t)}, it fol-
lows that x1 and x2 are also uniformly bounded from above.Moreover, all solutions starting
in the positive quadrant eventually enter the compact region of this quadrant defined by
max{αx1, x2} ≤ max{αM1,M2} regardless of initial population densities.

Finally, by Theorem 2.8.6 of Bhatia and Szegö [3] (see also [28], Theorem D.3), there is
a coexistence equilibrium E∗. �

A well-known sufficient condition to rule out the existence of periodic orbits of a
dynamical system in a simply connected region of the plane is given in the following
theorem.
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Theorem 2.4 (Dulac criterion): Let D be an open and simply connected region of the plane
and consider the dynamical system given by

x′
1 = f (x1, x2),

x′
2 = g(x1, x2).

(10)

Let the functions f and g be continuously differentiable on D and suppose that there is a con-
tinuously differentiable function ϕ on D (called a Dulac function) such that (∂/∂x1)(ϕf ) +
(∂/∂x2)(ϕg) is either strictly positive or strictly negative almost everywhere on D. Then D
does not contain any periodic solution of system (10).

We are now able to state and prove our stability result concerning a coexistence
equilibrium.

Theorem 2.5: Suppose that the assumptions (C1), (C2), (C3) hold, there is α > 0 such that
R1(α) < 1 andR2(1/α) < 1 and there is a unique coexistence equilibrium E∗. Then E∗ is
globally asymptotically stable.

Proof: Under the assumptions of this theorem, the global stability of E∗ follows from
ruling out periodic solutions using the Dulac criterion with the following Dulac function

ϕ(x1, x2) := 1
x1x2a1(x1)a2(x2)

.

Using assumption (C2), the differential expression appearing in the Dulac criterion evalu-
ates as

∂

∂x1
[ϕ(x1, x2)x′

1] + ∂

∂x2
[ϕ(x1, x2)x′

2]

= − r1
x2a2(x2)

∂

∂x1

[
f1(x1, x2)
a1(x1)

]
− r2

x1a1(x1)
∂

∂x2

[
f2(x2, x1)
a2(x2)

]
< 0.

Therefore, no periodic solution exists in the first quadrant for the model (9) and E∗ is thus
globally asymptotically stable.

Note also that if the assumption (C3) holds for all positive x1 and x2, the existence of a
unique coexistence equilibrium E∗ implies that all solutions of themodel (9) are uniformly
bounded, by Lemma 2.1 and Theorem 2.2. �

Remark 2.1: In some sense, α is a critical ratio, although in this context one may find
a continuum of critical ratios rather than a single one. If the ratio between densities of
the second and first species equals α, both species experience a decrease at large popula-
tion densities, since negative rates surpass positive ones. If this ratio falls below α, to some
β < α, then, due to the monotonicity ofR1, the first species, which is now ‘excedentary’,
will have to decrease its density, since R1(β) ≤ R1(α) < 1. Similarly, if this ratio goes
above α, to some γ > α, then due to the monotonicity ofR2, it will be the turn of the sec-
ond species to be ‘excedentary’ and to decrease its density, sinceR2(1/γ ) ≤ R2(1/α) < 1.
That is, the inequalities R1(α) < 1 and R2(1/α) < 1 help create a balance mechanism,
which keeps unboundedness in check.
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The following result shows that the boundedness condition from the previous theorem
is necessary to guarantee that all solutions are bounded (and thus to avoid the unrealistic
reinforcing of the mutualistic effects).

Theorem 2.6: Let the assumptions (C1) and (C3) hold. If there is α > 0 such thatR1(α) >

1 andR2(1/α) > 1, then solutions of the model (9) are unbounded if the initial population
density is large enough.

Proof: We have already seen that solutions of the model (9) are bounded from below by a
strictly positive constant. Hence we can assume that there exists ξ > 0 such that x1(t) > ξ

and x2(t) > ξ . Seeking for a contradiction, we assume that the function

h(t) := min{αx1(t), x2(t)}
is bounded from above, i.e. h(t) < M for a certain M>0 and for any t. With these
assumptions we have the following two cases for each t>0.

Case 1. h(t) = αx1(t). One then has, by (M) and the first part of (C1)

x′
1
x1

≥ r1[a1(x1) − f1(x1,αx1)] = r1f1(x1,αx1)
[

a1(x1)
f1(x1,αx1)

− 1
]

> r1f1(ξ ,M)

[
a1(x1)

f1(x1,αx1)
− 1

]
.

Assuming that x1(0) > M1 > 0 the last term is positive and decreasing in x1. Passing to
the limit as x1 → ∞ and using (C3), it follows that

x′
1
x1

> r1f1(ξ ,M)[R1(α) − 1] > 0.

Case 2. h(t) = x2(t). One then has, again by (M) and the first part of (C1), that

x′
2
x2

≥ r1
[
a2(x2) − f2

(
x2,

1
α
x2
)]

= r2f2
(
x2,

1
α
x2
)[

a2(x2)
f2(x2, 1α x2)

− 1

]

> r2f2
(

ξ ,
M
α

)[
a2(x2)

f2(x2, 1α x2)
− 1

]
.

Similarly, if x2(0) > M2 > 0, passing to the limit as x2 → ∞ in the last term and using
(C3), it follows that

x′
2
x2

> r2f2
(

ξ ,
M
α

)[
R2

(
1
α

)
− 1

]
> 0.

This shows that h′/h is bounded from below by a strictly positive constant C>0 with

C := min
{
r1f1(ξ ,M)[R1(α) − 1], r2f2

(
ξ ,

M
α

)[
R2

(
1
α

)
− 1

]}
> 0,

as long as h(0) > max{αM1,M2}. While h′ is not differentiable everywhere in the classical
sense, as an increasing function it is differentiable almost everywhere and the following
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weak version of the Fundamental Theorem of Calculus holds∫ t

0

h′(τ )

h(τ )
dτ ≤ ln h(t) − ln h(0).

We thus have

ln h(t) − ln h(0) ≥
∫ t

0

h′(τ )

h(τ )
dτ >

∫ t

0
C dτ = Ct.

Letting t → ∞ in this inequality, it follows that h(t) → ∞. This contradicts the assump-
tion that h is bounded from above. Hence h and, therefore, both x1 and x2 are
unbounded. �

Remark 2.2: It can be seen that the conditions for boundedness and unboundedness are
mutually exclusive. To this purpose, note that, sinceR1 andR2 are increasing

[R1(α) − R1(β)]
[
R2

(
1
α

)
− R2

(
1
β

)]
≤ 0 for all α,β ≥ 0.

Consequently, if there is any α such that R1(α) < 1 and R2(1/α) < 1, there cannot be
any β such thatR1(β) > 1 andR2(1/β) > 1, and vice versa.

Remark 2.3: The boundedness conditions derived in our theorems can be expressed in
the form of a single threshold for a broad class of mutualism models, including most of
the models already analysed in the literature. For example, this is always the case when the
limitsR1(α) andR2(α) come from rational expressions, having the form

R1(α) = C1α
p1 , R2(α) = C2α

p2 , p1, p2 > 0, C1,C2 ≥ 0. (11)

Then the boundedness condition is equivalent to finding α > 0 such that

C1α
p1 < 1, C2

(
1
α

)p2
< 1.

If one of the constants C1, C2 is 0, then the boundedness condition is satisfied regardless
of the value of the other constant. For example, if C1 = 0 then R1(α) = 0 for any α and
R2(1/α) can be made less than 1 by choosing α large enough. Similarly, if C2 = 0 then
R2(1/α) is always zero andR1(α) can be made less than 1 by choosing α small enough. If
bothR1 andR2 are identically zero, then the boundedness follows without any condition
on the existence of a suitable α.

Finally, if C1,C2 > 0, then

C1α
p1 < 1, C2

(
1
α

)p2
< 1 =⇒ C1/p2

2 < α <

(
1
C1

)1/p1
,

condition which is satisfied if C1/p1
1 C1/p2

2 < 1. It follows that the boundedness condition is
satisfied for all values of C1,C2, null or not, such that C1/p1

1 C1/p2
2 < 1.



JOURNAL OF BIOLOGICAL DYNAMICS 349

Similarly, the unboundedness condition is equivalent to finding α > 0 such that

C1α
p1 > 1, C2

(
1
α

)p2
> 1.

Obviously, the unboundedness condition cannot be satisfied if any of C1, C2 is null. If C1,
C2 > 0, then

C1α
p1 > 1, C2

(
1
α

)p2
> 1 =⇒

(
1
C1

)1/p1
< α < C1/p2

2 ,

condition which is satisfied if C1/p1
1 C1/p2

2 > 1.
Consequently, in the particular case defined by Equation (11), our conditions are

threshold-like. Specifically, if we define

R = C1/p1
1 C1/p2

2 , (12)

then the boundedness condition can be expressed as R < 1, while the unboundedness
condition can be expressed asR > 1.

2.2. Mutualisms that affect the growth function

We now show that the approach used to discuss stability of Equation (9) can be easily
adapted for the situation in which the mutualism affects the growth function a rather than
the self-limiting function f. The main theorems presented above still hold and, since their
proofs are very similar, we only state here the specific assumptions, thresholds and the
Dulac function to be used in the argument for non-existence of periodic solutions.

x′
1 = r1x1[f1(x1, x2) − a1(x1)],

x′
2 = r2x2[f2(x2, x1) − a2(x2)].

(13)

The consistency assumptions are now as follows:

(C1) a1(x1) is increasing in x1 and a2(x2) is increasing in x2,
(C2) f1(x1, x2)/a1(x1) is decreasing in x1 and f2(x2, x1)/a2(x2) is decreasing in x2,
(C3) f1(x1,αx1)/a1(x1) and f2(x2,αx2)/a2(x2) are eventually decreasing for all α > 0,

and themutualism-specific assumption is

(M) f1(x1, x2) is increasing in x2 and f2(x2, x1) is increasing in x1.

Hence, the limitsR1(α),R2(α) are now given by

R1(α) = lim
x1→∞

f1(x1,αx1)
a1(x1)

, R2(α) = lim
x2→∞

f2(αx2, x2)
a2(x2)

,



350 D. MAXIN ET AL.

and the Dulac function corresponding to the model (13) is ϕ(x1, x2) := 1/x1x2a1(x1)
a2(x2), which leads to

∂

∂x1
[ϕ(x1, x2)x′

1] + ∂

∂x2
[ϕ(x1, x2)x′

2]

= r1
x2a2(x2)

∂

∂x1

[
f1(x1, x2)
a1(x1)

]
+ r2

x1a1(x1)
∂

∂x2

[
f2(x2, x1)
a2(x2)

]
< 0

for any positive x1 and x2.

2.3. Models with asymmetric mutualism effects

We can also have a combination of the situations shown in the models (9) and (13), in
which x2 reduces the death rate of x1 and x1 increases the birth rate of x2, which allows for
the modelling of interacting species with very different vital parameters, as follows:

x′
1 = r1x1[a1(x1) − f1(x1, x2)],

x′
2 = r2x2[f2(x2, x1) − a2(x2)].

(14)

Here, the assumptions on a1 and f1 are those used in the analysis of model (9) while
for f2 and a2 we consider the assumptions from Equation (13). Again, the bounding theo-
rems presented above hold with very similar proofs and the Dulac function is ϕ(x1, x2) :=
1/x1x2a1(x1)a2(x2), which leads to

∂

∂x1
[ϕ(x1, x2)x′

1] + ∂

∂x2
[ϕ(x1, x2)x′

2]

= − r1
x2a2(x2)

∂

∂x1

[
f1(x1, x2)
a1(x1)

]
+ r2

x1a1(x1)
∂

∂x2

[
f2(x2, x1)
a2(x2)

]
< 0.

2.4. Mutualismmodel with strong Allee effects

Wenow assume that a strong Allee effect affects one of the species involved in amutualistic
interaction. Specifically, we shall replace the growth assumption (G) with the following
strong Allee effect assumptions:

(S1) a(x) − f (x) < 0 for 0< x<A,
(S2) a(x) − f (x) > 0 for A< x<K,
(S3) a(x) − f (x) < 0 for x>K,
(S4) a(A) − f (A) = a(K) − f (K) = 0.

This ensures that a species with a strong Allee effect goes extinct if its density drops
below the Allee threshold A and that A is now an unstable equilibrium of the model (8).
If both species are subject to a strong Allee effect, then it is easy to see that the extinction
state will always be a locally stable attractor. Hence, global stability of any coexistence equi-
librium can only be addressed if just one of the species exhibits a strong Allee effect. In this
case, the benefit this species gets from mutualism can be sufficiently strong to prevent its
extinction when below A. We will establish a general condition for this to occur.
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Let us consider the model (9) and assume that x1 undergoes a strong Allee effect with
the Allee threshold A1 and the carrying capacity K1, while x2 obeys the growth assump-
tion (G) with the carrying capacity K2. In the absence of mutualism this system will have
the following five equilibria (0, 0), (A1, 0), (K1, 0), (0,K2), (A1,K2), and (K1,K2). Of these,
(0,K2) and (K1,K2) are stable. In the presence of mutualism, assuming all other consis-
tency conditions (C1), (C2) and (C3), if there exist a unique coexistence equilibrium of
the model (9), then this equilibrium will be globally stable provided that all solutions are
uniformly bounded in the positive quadrant. The boundedness arguments shown in the
main two theorems of the previous section hold also here, with the caveat that we need
to establish a condition which ensures that there is no limit point for any solution on a
semi-axis.

While x2 cannot go extinct due to the growth assumption (G), x1 may approach zero
because of the strongAllee effect assumptions (S1)– (S4). Thismay happen at the boundary
equilibrium (0,K2). Evaluating the Jacobian of model (9) at this equilibrium we obtain⎛

⎜⎝
r1[a1(0) − f1(0,K2)] 0

−r2K2
∂f2
∂x1

(K2, 0) r2K2

[
a′
2(K2) − ∂f2

∂x2
(K2, 0)

]
⎞
⎟⎠ .

We see that the above matrix has two eigenvalues

r1[a1(0) − f1(0,K2)] and r2K2

[
a′
2(K2) − ∂f2

∂x2
(K2, 0)

]
.

The second eigenvalue is negative by the growth assumption (G). Hence, (0,K2) is unstable
provided that

a1(0) − f1(0,K2) > 0. (15)

This represents the necessary and sufficient condition that species x2 prevents the extinc-
tion of species x1 and annihilates its strong Allee effect. If all other necessary conditions for
the theorems in the previous section are met, then the coexistence equilibrium is globally
stable.

3. Application to specific mutualismmodels

Here we apply our general results of the previous section to several specific, biologically
motivated mutualism models, thus demonstrating broad utility of our approach.

3.1. Wolin–Lawlormodel with weak Allee effect

WeakAllee effects are thought to be relatively common in nature, so it is natural to consider
mutualism models with one or both species possessing a weak Allee effect. The following
modification of model (2) allows for coverage of weak Allee effects

x′
1 = r1x

p1
1

(
1 − x1

K1 + b12x2

)
,

x′
2 = r2x

p2
2

(
1 − x2

K2 + b21x1

)
,

p1, p2 ≥ 1, K1,K2 > 0. (16)
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In the absence of mutualism (i.e. for b21 = b12 = 0), Equation (16) decouple and each of
them is of type (7). Therefore, if any of the exponents p1, p2 is greater than 1, then the
respective species is subject to a weak Allee effect, while if both exponents are equal to 1,
then there is no Allee effect and the model (16) reduces to the model (2).

It is easy to see that existence and uniqueness of a coexistence equilibrium E∗ of model
(16) is assured if and only if b12b21 < 1. If this is the case, then

E∗ = (x∗
1, x

∗
2), x∗

1 = K1 + b12K2

1 − b12b21
, x∗

2 = K2 + b21K1

1 − b12b21
,

a1(x1) = xp1−1
1 , a2(x2) = xp2−1

2 ,

f1(x1, x2) = xp11
K1 + b12x2

, f2(x2, x1) = xp22
K2 + b21x1

,

and consequently

a1(x1)
f1(x1,αx1)

= K1 + b12αx1
x1

,
a2(x2)

f2(x2,αx2)
= K2 + b21αx2

x2
.

This fits the framework of the general model (4) with R1(α) = b12α,R2(α) = b21α and
R = b12b21. As a consequence, ifR < 1 then E∗ is globally stable.

3.2. q-LogisticWolin–Lawlormodel with weak Allee effect

The classical logistic model of population growth with a linear per capita population
growth rate is an idealization that is only rarelymet in nature. Rather, relationships between
the per capita population growth rate and population density are commonly non-linear,
with convex relationships being more numerous [27]. A common model used to describe
such non-linear relationships is x′ = rx(1 − (x/K)q) for a positive parameter q [27]. We
thus consider the following mutualism model with the generalized logistic term and
possibly with a weak Allee effect

x′
1 = r1x

p1
1

(
1 − xq11

Kq1
1 + b12xn12

)
,

x′
2 = r2x

p2
2

(
1 − xq22

Kq2
2 + b21xn21

)
,

(17)

assuming that Ki > 0, pi ≥ 1, qi > 0 and ni > 0 for i=1,2. For this model, we have

a1(x1) = xp1−1
1 , a2(x2) = xp2−1

2 ,

f1(x1, x2) = xp1+q1−1
1

Kq1
1 + b12xn12

, f2(x2, x1) = xp2+q2−1
2

Kq2
2 + b21xn21

,

and consequently

a1(x1)
f1(x1,αx1)

= Kq1
1 + b12αn1xn11

xq11
,

a2(x2)
f2(x2,αx2)

= Kq2
2 + b21αn2xn22

xq22
.
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The consistency condition (C3) here requires that n1 ≤ q1 and n2 ≤ q2. If n1 < q1 then
R1(α) = 0 for all α > 0, while if n1 = q1 we get R1(α) = b12αq1 . Similarly, if n2 < q2
thenR2(α) = 0 for all α > 0, while if n2 = q2 thenR2(α) = b21αq2 . It then follows that
if n1 < q1 or n2 < q2 then the boundedness condition is satisfied for all other parameter
values, while if n1 = q1 and n2 = q2 the boundedness condition is satisfied provided that

R = (b12)1/q1(b21)1/q2 < 1.

We provide an illustrative numerical example. Let p1 = p2 = 1 + 10−4, q1 = n1 = 3, and
q2 = n2 = 1. For K1 = 15, K2 = 35, b12 = 0.75, and b21 = 0.7 we see thatR = 0.64 and
there is a unique equilibrium, which is globally stable. On the contrary, for K1 = 40, K2 =
55, b12 = 2, and b21 = 1 we haveR = 1.38 and the solutions are unbounded. In Figure 1
we show the phase portraits corresponding to these two situations, with r1 = 3 × 10−5 and
r2 = 1.05 × 10−4 in panel (A) and r1 = 8 × 10−5 and r2 = 1.65 × 10−4 in panel (B). Note
that the parameters r1 and r2 do not affect equilibrium stability but we set their values in
order to plot the respective phase portraits.

In Figure 2 we show the region of a selected two-parameter space in which the solu-
tions of the model (17) are bounded and we have a unique globally stable equilibrium. The
shaded region corresponds to R < 1. In panel (A), we compare the relative effect of the
terms describing the mutualism effect, b12 and b21. In panel (B), we compare the effect of
a limiting resource term of one species (q1) with the mutualistic effect of the other species
(b12). All other parameters are as considered for Figure 1.

We note that in the case p1 = p2 = 1 we obtain a q-logistic Wolin–Lawlor model with
no Allee effect. If we further set q1 = q2 = n1 = n2 = q > 0, there is a unique positive
equilibrium E∗ = (x∗

1, x
∗
2), with

x∗
1 =

(
Kq
1 + b12K

q
2

1 − b12b21

)1/q

, x∗
2 =

(
Kq
2 + b21K

q
1

1 − b12b21

)1/q

,

Figure 1. Phase portrait of model (17).
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Figure 2. Global stability region for model (17).

if and only ifR = b12b21 < 1, and this equilibrium is globally stable by Theorem 2.5. On
the other hand, ifR > 1 the model solutions are unbounded by Remark 2.3.

3.3. Model with non-polynomial thresholdsR1 andR2

Formost publishedmutualismmodels, the limitsR1 andR2 are powers ofα. Nevertheless,
our generalization does not require this particular form and for illustrative purposes we
consider one example for which these limits have a different form, as follows:

x′
1 = r1x1

[
1 − K1x1

1 + x1

(
1 + 1

1 + x2

)x1]
,

x′
2 = r2x2

[
1 − K2x2

1 + x2

(
1 + 1

1 + x1

)x2]
,

(18)

with K1 < 1 and K2 < 1. Then

R1(α) = 1
K1

e−1/α , R2(α) = 1
K2

e−1/α .

The existence of a real number α such thatR1(α) < 1 andR2(1/α) < 1 is now equivalent
to

R := lnK1 lnK2 < 1

and the solutions of model (18) are unbounded if the opposite inequality holds. For
instance, if K1 = 0.3 and K2 = 0.55 then R = 0.72, the solutions are bounded and we
have a unique globally stable equilibrium (Figure 3(a)). On the other hand, if K1 = 0.23
and K2 = 0.43 and all the other parameters are the same then R = 1.24 and all solu-
tions are unbounded (Figure 3(b)). We have r1 = 0.002 and r2 = 0.0033 in panel (A) and
r1 = 0.0026 and r2 = 0.0042 in panel (B).

In Figure 4 we plot the region of global stability when K1 and K2 vary.
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Figure 3. Phase portrait of model (18).

Figure 4. Global stability region for model (18), in whichR(K1, K2) < 1.

3.4. Model withmutualistic effects at low densities

In the previously considered mutualistic models (except Equation (18)), the mutualistic
effect can be factored such that fi(x1, x2) is separated as a product of a function depending
only on x1 and a function depending only on x2. Our general results allow for models
in which one cannot perform such a factorization. The following model exemplifies this
situation

x′
1 = r1x1

(
1 − xq11

Kq1
1 + b12

1+x1 x
n1
2

)
,
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x′
2 = r2x2

(
1 − xq22

Kq2
2 + b21

1+x2 x
n2
1

)
, (19)

and has a biological appeal in describing the case when mutualism takes effect if the ben-
eficiary species is at low densities and wanes as it grows. More specifically, the larger x1 is
the lower is its benefit gained from the presence of x2 and vice versa. It is seen that

a1(x1) = 1, a2(x2) = 1,

f1(x1, x2) = xq11
Kq1
1 + b12

1+x1 x
n1
2
, f2(x2, x1) = xq22

Kq2
2 + b21

1+x2 x
n2
1
,

and consequently

a1(x1)
f1(x1,αx1)

= Kq1
1

xq11
+ b12αn1

xq1−n1
1 (1 + x1)

,

a2(x2)
f2(x2,αx2)

= Kq2
2

xq22
+ b21αn2

xq2−n2
2 (1 + x2)

.

The consistency condition (C3) requires in this case that q1 ≥ n1 and q2 ≥ n2. However,
R1(α) = R2(α) = 0 for all α > 0, and the boundedness condition is thus satisfied. This
is consistent with our previous interpretation: if mutualism wanes when the beneficiary
species is at larger densities, there is less need to impose a further condition to prevent
unboundedness.

Since the growth assumption (G) implies thatR1(0) < 1 andR2(0) < 1, using the ideas
of Theorems 2.2 and 2.6 and Remark 2.3 one may obtain the following result:

Remark 3.1: (1) If R1(α) < 1 for all α > 0 or R2(α) < 1 for all α > 0, then the solu-
tions of model (9) are uniformly bounded.

(2) If R1 and R2 are continuous and strictly increasing as functions of α and there are
a1, a2 ∈ (0,∞) such thatR1(a1) = R2(a2) = 1, then
(a) if a1a2 > 1, then the solutions of model (9) are uniformly bounded;
(b) if f1a2 < 1, then the solutions of model (9) are unbounded.

3.5. Models with saturating functional response formutualistic interaction

TheLotka–Volterra mutualism model (1) is a model of mutualism that fits the general for-
mulation (3). Not surprisingly, our general theory gives for it the boundedness (and global
stability) condition b12b21 < 1, which is also the existence condition for its unique positive
equilibrium. Here we consider another model that fits the general formulation (3). It is a
modification of the Lotka–Volterra model that considers a saturating functional response
for the mutualistic interaction. This model is commonly used in theoretical studies on
mutualistic interactions and assumes that the effects of mutualists saturate as their density
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becomes high [19, 31]. Here we consider a version proposed in [14] which has the form

x′
1 = r1x1

(
1 − x1

K1

)
+ c1x1(1 − e−κ2x2),

x′
2 = r2x2

(
1 − x2

K2

)
+ c2x2(1 − e−κ1x1).

(20)

For this model, the elements of Equation (3) are

f1(x1, x2) = 1 + c1
r1

(1 − e−κ2x2), a1(x1) = x1
K1

,

f2(x2, x1) = 1 + c2
r2

(1 − e−κ1x1), a2(x2) = x2
K2

,

and consequently

f1(x1,αx1)
a1(x1)

= K1

x1

[
1 + c1

r1
(1 − e−κ2αx1)

]
,

f2(x2,αx2)
a2(x2)

= K2

x2

[
1 + c2

r2
(1 − e−κ1αx2)

]
.

It then follows that

R1(α) = R2(α) = 0

implying that the solutions of model (20) are bounded. Since there is always a unique pos-
itive equilibrium of model (20) (see, for instance [13]), this equilibrium is globally stable.
The same results hold also for a Holling type II formulation of the saturating functional
response [19, 31].

3.6. Models with structurally different equations

To exemplify a biologically plausible case forwhich themutual effects ofmutualistsmay not
be symmetric, we consider here amodel that combines two structurally different equations

x′
1 = r1x

p
1

(
1 − x1

K1 + b12x2

)
,

x′
2 = r2x2

(
1 − x2

K2

)
+ c2x2(1 − e−κ1x1),

(21)

where h and c are some positive parameters. The first equation comes from the
Wolin–Lawlor model with weak Allee effect (16) and may represent a plant that is able to
grow also vegetatively but for which pollinators attracted when plant densities are higher
significantly and increasingly contribute to the per capita population growth rate. The
second equation comes from the model (20) and may represent a pollinator species the
beneficial effect of which does not increase much more when its density is already high
enough.
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Using the notation from (14) we have that

a1(x1) = xp−1
1 , f1(x1, x2) = xp1

K1 + b12x2
,

f2(x2, x1) = 1 + c2
r2

(1 − e−κ1x1), a2(x2) = x2
K2

.

Therefore,

a1(x1)
f1(x1,αx1)

= K1 + b12αx1
x1

,

f2(x2,αx2)
a2(x2)

= K2

x2

[
1 + c2

r2
(1 − e−κ1αx2)

]
.

Then,

R1(α) = b12α and R2(α) = 0.

The coordinates of the positive equilibrium E∗ = (x∗
1, x

∗
2) should satisfy the relations

K1 + b12x∗
2 = x∗

1,

r2
(
1 − x∗

2
K2

)
+ c2(1 − e−κ1x∗

1 ) = 0,

which leads to x∗
2 being a solution of the equation

f (x2) = 0, (22)

with

f (x2) = r2x2
K2

+ c2 e−κ1(K1+b12x2) − (r2 + c2).

Since f (0) < 0, limx2→∞ f (x2) = +∞, f is continuous and

f ′′(x2) = c2(κ1b12)2 e−κ1(K1+b12x2) > 0 for all x2 > 0,

it follows that Equation (22) has a single positive solution and, consequently, Equation (21)
has a unique coexistence equilibrium, which is globally stable.

3.7. Models with strong Allee effect

Although strong Allee effects are quite difficult to detect in nature, some convincing exam-
ples exist and indirect evidence suggests there are evenmore of them [6]. As we emphasize
in the previous section, a globally stable coexistence equilibrium is not possible if both
species are subject to a strong Allee effect. But even when just one of the species is subject
to a strong Allee effect, a beneficial effect of the other species need not always prevent that
Allee effect. In other words, condition (15) need not be always satisfied, as we show in the
following example.
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Consider a species subject to a strong Allee effect that follows model (6) when alone. A
possible mutualism model is then

x′
1 = r1x1

[(
1
A1

+ 1
K1

)
x1 − A1K1 + x21

A1K1 + b12x2

]
,

x′
2 = r2x2

(
1 − x2

K2 + b21x1

)
.

(23)

In this setting

a1(x1) =
(

1
A1

+ 1
K1

)
x1, f1(x1, x2) = A1K1 + x21

A1K1 + b12x2
,

and it is clear that condition (15) cannot hold. On the other hand, our boundedness
theorem still applies. Since

R1(α) = (K1 + A1)b12α
A1K1

, R2(α) = b21α,

it follows that model (23) has bounded solutions whenever

R := b12b21(A1 + K1)

A1K1
< 1.

On the other hand, if R > 1 then all solutions are unbounded except those starting in
the basin of attraction of the boundary equilibrium (0,K2), which describes presence of a
strong Allee effect in spite of the mutualism.

On the contrary, the following example describes a situation in which mutualism can
overcome an existing strong Allee effect, condition (15) holds and there is a unique
coexistence equilibrium that is globally stable. The mutualism model is as follows:

x′
1 = r1x1

(
A1 ex1 − B1 + x1 ex1

1 + b12x2

)
,

x′
2 = r2x2

(
1 − x2

K2 + b21x1

)
.

(24)

In this case

a1(x1) = A1 ex1 , f1(x1, x2) = B1 + x1 ex1

1 + b12x2
.

The per capita growth rate of the first species in the absence of mutualism, a1(x1) −
f1(x1, 0), has a critical point at x1 = A1 − 1. Hence, in order to satisfy the strong Allee
effect assumptions (S1)–(S4), we need to set the parameters A1 and B1 so that

eA1−1 > B1 > A1 > 1. (25)

This ensures that, in the absence of mutualism, the first species is subject to a strong Allee
effects and has a hump-shaped per capita growth rate that equals zero at two different
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positive values of x1. Since

R1(α) = A1b12α, R2(α) = b21α,

model (24) has bounded solutions if and only if

R := b12b21A1 < 1.

Figure 5. Phase portrait of model (24).

Figure 6. The region where mutualism eliminates the strong Allee effect in the model (24).
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In addition, the strong Allee effect is eliminated in the first species if and only if condi-
tion (15) holds, which in this particular case requires that

A1 >
B1

1 + b12K2
. (26)

We provide a numerical example to show that conditions (25) and (26) can indeed be
satisfied simultaneously. Choosing A1 = 3, B1 = 7, b12 = 0.1, and b21 = 0.7 we have that
R = 0.21. If K2 = 3, then the strong Allee effect in the first species is maintained and the
boundary equilibrium (0,K2) remains locally stable (Figure 5(a)). On the other hand, if
K2 = 13 then (0,K2) becomes a saddle and the first species will never go extinct since
mutualism prevents the strong Allee effect (Figure 5(b)). In Figure 6, we show the region
given by the parameter that controls a vital rate of the first species (A1) and the parameter
describing the beneficial effect of the other species (b12) in which the strong Allee effect in
the first species is eliminated.

4. Conclusions

In this article, we extend the work of Georgescu et al. [12, 13] and provide a general class of
models of facultative mutualism that covers many of the commonly used mutualismmod-
els. Most importantly, we study boundedness of solutions of models in this general class
which, from the biological perspective, is an important necessary condition for any mutu-
alismmodel to be considered plausible. Themain theoremswe provide in this respect allow
for a much greater flexibility in designing these models. Formulations of the mutualistic
interaction can now be more complex (i.e. do not require a factorization in the state vari-
ables) and each species can be modelled under different assumptions (e.g. one can benefit
from a reduction in mortality and the other from an increase in fertility). Our generaliza-
tion is therefore suitable for modellingmutualistic systems in which the interacting species
are very different with respect to their vital parameters but also to their demographic
assumptions. In addition, our generalization covers Allee effects as a part of mutualism
models. This is certainly relevant, since at small population sizes or low population den-
sities Allee effects (and especially weak Allee effects) are known to be relatively common
(see, for instance, [5]). Mutualismmodels with Allee effects form just a specific case of our
general model class, so they can be treated without any additional overhead provided that
some general assumptions are met. Therefore, the most important biological implication
of the results established herein is that many more systems than before are now known
to be stable and that the presented models may become more adequate descriptions of
mutualisms in models of more complex food webs.

Virtually all published mutualismmodels, including all we present in this article, follow
a tradition set by Lotka andVolterra and have a logistic-likemodel or its Allee effect variant
as their core element. Because of that, there is no clear distinction between birth and death
rates in these models and both positive (or growth) and negative (or self-limiting) model
terms comprise a piece of each. An alternative, more mechanistic approach would be to
start with a model in which birth and death rates are explicit right from the beginning,
such as

x′ = x[b(x) − d(x)], (27)



362 D. MAXIN ET AL.

where the positive functions b and d represent the per capita birth and death rates, respec-
tively. Mutualistic effects could then be classified as those that affect births, deaths, or both
terms. Note that the single-species model (8) we start from has the same structure as the
model (27). Therefore, if any mutualistic extension of the model (27) satisfies our assump-
tions, the general results we derive would apply also to this class of models. In addition,
with birth and death rates clearly defined, the ratiosR1 andR2 which enter all our general
results would technically represent births to deaths ratios at given population densities and
would thus be somewhat akin to reproductive ratios that characterize infection dynamics
in epidemiology or population dynamics in life history theory. See also [10] for further
discussion on related matters.

Some limitations of our work still exist, whichmay serve as potential avenues for further
research. First of all, the consistency condition (C2) is far more restrictive than the similar
condition (C1). This is due to our choice of the Dulac function used in our global stability
argument. Presumably, a more elaborate Dulac function may allow a weaker condition in
place of (C2). On the other hand, this may require more information about the structure
of functions ai and fi and so there is likely to be a trade-off between how general these
functions are and how less restrictive the Dulac function can be. In this paper, we place
more importance on the solution boundedness results (required for biological plausibility)
and on generality of mutualism models. While the derived conditions on bounded and
unbounded solutions are mutually exclusive and in many cases threshold-like, the issue of
uniqueness of a coexistence equilibrium is a separate question and does not follow directly
from these conditions. It would certainly be of interest if a generalizationweremade so that
uniqueness of a coexistence equilibrium follows from further suitable conditions on the
right-hand sides of our generalizedmutualismmodels.We expect to pursue these questions
in a follow-up paper.
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