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Abstract Models of sexually transmitted infections have become a fixture of math-
ematical epidemiology. A common attribute of all these models is treating repro-
duction and mating, and hence pathogen transmission, as uncoupled events. This is
fine for humans, for example, where only a tiny fraction of sexual intercourses ends
up with having a baby. But it can be a deficiency for animals in which mating and
giving birth are tightly coupled, and mating thus mediates both reproduction and
pathogen transmission. Here, we model dynamics of sterilizing, sexually transmitted
infections in such animals, assuming structural consistency between the processes
of reproduction and pathogen transmission. We show that highly sterilizing, sexu-
ally transmitted pathogens trigger bistability in the host population. In particular, the
host population can end up in two extreme alternative states, disease-free persistence
and pathogen-driven extinction, depending on its initial state. Given that sterilizing,
sexually transmitted infections that affect animals are abundant, our results might
implicate an effective pest control tactic that consists of releasing the corresponding
pathogens, possibly after genetically enhancing their sterilization power.
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1 Introduction

Since the short yet seminal article by Getz and Pickering (1983), modelers of infec-
tious disease dynamics have discerned two baseline ways of how to model pathogen
transmission. The original model, invariably used until that time and found reason-
able for infections triggered by airborne pathogens (Anderson and May 1979), is now
known as mass action incidence or density-dependent transmission. The alternative,
suggested by Getz and Pickering (1983) and now referred to as standard incidence
or frequency-dependent transmission, has since become a norm for modeling vector-
borne and sexually transmitted infections (Vynnycky and White 2010). Although
many discussions have passed and other transmission models have been suggested
and substantiated (McCallum et al. 2001), this dichotomy is still largely used.

However, as revolutionary as this disjunction was, it has affected just the pathogen
transmission term and not the other parts of models of infectious disease dynamics. In
particular, it has not affected the reproduction part of the models, so that reproduction
has standardly been modeled as decoupled from pathogen transmission. That is, the
same birth terms (often linear, but also density-dependent) have been used irrespec-
tively of the model of disease transmission (e.g., Busenberg and van den Driessche
1990; Gao and Hethcote 1992; Thrall and Antonovics 1997; O’Keefe and Antonovics
2002; Hilker et al. 2009; Hilker 2010). This is fine for airborne and vector-borne in-
fections, and also for some populations challenging sexually transmitted infections
such as humans in which only a tiny fraction of sexual intercourses ends up with hav-
ing a baby. But it can be a deficiency for sexually transmitted infections in animals
in which mating and giving birth are more intertwined, and even tightly coupled, and
mating thus mediates both reproduction and pathogen transmission. As an example,
consider a system where males guard their mates until they cannot be sneaked by oth-
ers. In such cases, an appropriate model should let the processes of reproduction and
pathogen transmission run on a common basis, which has as yet been not the case.

In this article, we model dynamics of sterilizing, sexually transmitted infections in
animals, assuming structural consistency of reproduction and pathogen transmission
processes, mediated by mating. Sexually transmitted infections in animals are ubiq-
uitous, both as regards affected host taxa and etiological agents of such infections,
and many of these are sterilizing (Lockhart et al. 1996; Knell and Webberley 2004).
As one might expect, our model turns out to be structurally different from those com-
monly used to describe dynamics of sexually transmitted infections. Therefore, there
is no surprise that predictions of these two model types can be formidably differ-
ent. Perhaps most interestingly, highly sterilizing, sexually transmitted pathogens are
shown to trigger an extreme form of bistability in the host population—the host pop-
ulation can persist at the disease-free equilibrium or be subject to pathogen-driven
extinction, depending on its initial state; endemic equilibria, if they exist, are unsta-
ble. We suggest that pathogens triggering this form of bistability might be effective
pest control agents, but also discuss limitations our model may have.

2 Models

We develop and analyze a model of infectious disease dynamics that accounts for
sterilizing, sexually transmitted pathogens, and that assumes structural consistency
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between the processes of reproduction and pathogen transmission, both mediated by
mating. To rigorously describe the mechanics of disease transmission, we start with
a sex-structured population model, and only then simplify to its asexual version, as-
suming that males and females share identical life histories (this is arguably one of
the most common, and tacit, assumptions used in mathematical ecology and epidemi-
ology).

The core part of any sex-structured population model is the mating function, or a
model of the rate at which males and females mate. Let M(NM,NF ) be a generic
mating function, with NM and NF denoting male and female density, respectively.
With this function, the common two-sex modeling framework is as follows (Hadeler
et al. 1988; Lindström and Kokko 1998; Bessa-Gomes et al. 2004; Rankin and Kokko
2007):

dNF

dt
= γF wbM(NM,NF ) − (

μF + d(NM + NF )
)
NF

dNM

dt
= γMwbM(NM,NF ) − (

μM + d(NM + NF )
)
NM

(1)

In this model, b is the density of newborns per female reproductive event, γF

and γM are the proportions of females and males, respectively, among offspring
(γM + γF = 1), w is the fraction of matings that result in reproduction, μF

and μM are the background mortality rates of females and males, respectively,
when the population is rare, and d is the strength of density dependence in the
background mortality rate, equally affecting both sexes. The reproduction rate
wM(NM,NF ) is thus modeled as proportional to the mating rate. We adopt this
proportionality assumption here, while discussing its potential deficiencies for mod-
eling dynamics of sexually transmitted infection in the concluding section. One
may thus view our model as an endpoint of a continuum of potential mating-
reproduction relationships that occur in nature, where the other endpoint is formed
by the conventional population models in which mating and reproduction are decou-
pled.

Introducing an infectious disease and assuming homogeneous mixing,

M(NM,NF )
X

NM

Y

NF

(2)

is the rate at which susceptible males (X = SM ) or infected males (X = IM ) meet
and mate with susceptible females (Y = SF ) or infected females (Y = IF ). Assuming
no recovery from the disease and no vertical transmission, and denoting by σM and
σF the probabilities that an infected male and female, respectively, do not become
sterilized once infected, our sex-structured model of sterilizing, sexually transmitted
pathogens is as follows:
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dSF

dt
= γF wbM(NM,NF )

(SM + σMIM)

NM

(SF + σF IF )

NF

− ξM M(NM,NF )
IM

NM

SF

NF

− (μF + dN)SF

dSM

dt
= γMwbM(NM,NF )

(SM + σMIM)

NM

(SF + σF IF )

NF

− ξF M(NM,NF )
SM

NM

IF

NF

− (μM + dN)SM

dIF

dt
= ξM M(NM,NF )

IM

NM

SF

NF

− (μF + dN)IF − αF IF

dIM

dt
= ξF M(NM,NF )

SM

NM

IF

NF

− (μM + dN)IM − αMIM

(3)

In addition to the symbols introduced in the model (1), N = NM +NF = SM + IM +
SF + IF is the total population density, ξM and ξF are the probabilities of disease
transmission upon mating between a susceptible female and an infected male and a
susceptible male and an infected female, respectively, and αF and αM are the disease-
induced mortality rates in females and males, respectively.

Having composed a sex-structured model in which mating drives both reproduc-
tion and pathogen transmission, we now assume a 1:1 sex ratio at birth and sex-
independent process rates, that is, γF = γM = 0.5, μF = μM = μ, ξF = ξM = ξ ,
σF = σM = σ , and αF = αM = α, and reduce the sex-structured model to its asexual
version. Since then SF = SM = S/2 where S = SF + SM , and IF = IM = I/2 where
I = IF + IM , by adding equations for SF and SM , and for IF and IM , the model (3)
reduces to the model

dS

dt
= wbM

(
N

2
,
N

2

)
(S + σI)2

N2
− 2ξ M

(
N

2
,
N

2

)
SI

N2
− (μ + dN)S

dI

dt
= 2ξ M

(
N

2
,
N

2

)
SI

N2
− (μ + dN)I − αI

(4)

A variety of mating functions has been proposed, most of which originating in
the demographic literature where they are commonly referred to as marriage func-
tions (Iannelli et al. 2005). Of these, almost all demographic and ecological two-sex
models assume mating functions that are degree-one homogeneous: M(αx,αy) =
αM(x, y) for any positive x, y, and α (Caswell and Weeks 1986; Hadeler et al. 1988;
Castillo-Chavez and Huang 1995; Lindström and Kokko 1998; Iannelli et al. 2005;
Rankin and Kokko 2007; Miller and Inouye 2011). Loosely speaking, doubling pop-
ulation density so that the sex ratio is preserved, the mating rate should also double.
Despite this property being widely accepted, it is at the same time quite controver-
sial. While scale invariant and “naturally generalizing” the linear reproduction rate
commonly used in many asexual models (Iannelli et al. 2005), the degree-one homo-
geneous mating functions keep the per female mating rate constant if the sex ratio is
constant, whatever low male and female densities are. This latter feature is at least in
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some cases questionable, such as when population members challenge a mate-finding
Allee effect, that is, an enhanced difficulty in finding mates in low-density popula-
tions (Courchamp et al. 2008; Gascoigne et al. 2009). As most ecological papers on
two-sex modeling do, also we here assume a degree-one homogeneous mating func-
tion, while commenting on the use of an Allee-effect-driven mating function in the
discussion. With a degree-one homogeneous mating function, the model (4) becomes

dS

dt
= wb

2
M(1,1)

(S + σI)2

N
− ξ M(1,1)

SI

N
− (μ + dN)S

dI

dt
= ξ M(1,1)

SI

N
− (μ + dN)I − αI

(5)

Finally, denoting β = wbM(1,1)/2 and λ = ξ M(1,1), we get the model

dS

dt
= β

(S + σI)2

N
− (μ + dN)S − λ

SI

N

dI

dt
= λ

SI

N
− (μ + dN)I − αI

(6)

It is the model (6) that we are going to study in what follows. Although it is
unlikely that males and females would be identical in their response to pathogens,
virtually all published models of host-parasite dynamics are asexual. The purpose of
our reduction of the sex-structured model (3) to the asexual model (6) is to compare
our results to those of the conventional models. The value of the sex-structured model
is thus here primarily to correctly derive an asexual model. We can see in the model
(6) that assuming a degree-one homogeneous mating function actually implies a stan-
dard incidence model of pathogen transmission (frequency-dependent transmission).
We also note that σ = 0 means that all infected individuals get sterilized, while σ > 0
corresponds to an imperfect sterilization.

In the absence of infection, the model (6) reduces to

dN

dt
= βN − (μ + dN)N (7)

This is a model for logistic population growth: as soon as β > μ (reproduction ex-
ceeds mortality), the population attains a carrying capacity N∗ = β−μ

d
; if β < μ it

goes extinct. Naturally, we focus on the case in which the population is able to persist
without infection, so we assume β > μ from here on. All statements about existence
and stability of model equilibria are thus made with respect to this constraint.

The basic reproduction number for the infection described by the model (6), if the
population is at its carrying capacity, is

R0 = λ

μ + dN∗ + α
= λ

β + α
(8)

It thus equals the average number of adequate contacts, λ, of an infected individual
during its mean infectious period, 1/(μ + dN∗ + α), when the population is at the
disease-free equilibrium, N∗.
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3 Results

Due to singularity of the right-hand sides of the model (6) at S = I = 0, we study
its behavior in terms of the total population density N = S + I and the proportion of
susceptible individuals s = S/N . The transformed model is as follows:

dN

dt
= N

[
β
(
s + σ(1 − s)

)2 − (μ + dN) − α(1 − s)
]

ds

dt
= (1 − s)

[
β
(
s + σ(1 − s)

)2 − λs + αs
]

(9)

To simplify the analysis, we denote by G(s) the quadratic function in the equation
for s. Hence,

ds

dt
= (1 − s)G(s)

Any feasible equilibrium for the proportion of susceptible individuals, s, lies in the
interval (0,1). Since G(0) = βσ 2 > 0 we have three cases to analyze:

1. G(1) < 0. This is equivalent to R0 > 1 and implies the existence and uniqueness
of one endemic equilibrium se in the interval (0,1). Since G(s) > 0 for s < se and
G(s) < 0 for s > se it follows that se is globally stable.

Treating now the equation for N as an asymptotically autonomous equation, its
limiting equation is

dN

dt
= N(λse − μ − α − dN)

where we used the fact that G(se) = 0 implies β(se + σ(1 − se))
2 = (λ − α)se .

This is a logistic equation in N and the limit of N(t) depends on the sign of

se − μ + α

λ

If se <
μ+α

λ
then N(t) → 0 and the host population goes extinct. Otherwise, if

se >
μ+α

λ
then the host population approaches the endemic equilibrium (Ne, se)

where

Ne = λse − μ − α

d

Notice that μ+α
λ

< 1 due to R0 > 1 and our general assumption β > μ. There-
fore,

se <
μ + α

λ
is equivalent to G

(
μ + α

λ

)
< 0

which is

β

[
(1 − σ)

μ + α

λ
+ σ

]2

− (λ − α)
μ + α

λ
< 0
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Denoting by h(σ ) the left-hand side of this inequality, we notice that

h′(σ ) = 2β

[
μ + α

λ
+ σ

(
1 − μ + α

λ

)](
1 − μ + α

λ

)

which is positive under the conditions of this case. So, h(σ ) is increasing. On the
other hand

h(0) =
(

μ + α

λ

)[
β(μ + α)

λ
− (λ − α)

]
< 0

This means that, with enough sterility (σ → 0), the host population always goes
extinct.

2. G(1) > 0 (equivalent to R0 < 1) and G(s) has no roots in (0,1). In this case, 1 is
the only feasible equilibrium for s which is globally stable. This corresponds to a
disease-free equilibrium and

lim
t→∞N(t) = β − μ

d

3. G(1) > 0 (equivalent to R0 < 1) and G(s) has two roots in the interval (0,1).
Denoting by smin the s-coordinate of the vertex of G(s), this case is possible if
G′(0) < 0, G′(1) > 0, and G(smin) < 0 where

smin = λ − α − 2βσ(1 − σ)

2β(1 − σ)2

All these conditions, together with R0 < 1 are equivalent to

λ − α < β, 2βσ(1 − σ) < λ − α

2β(1 − σ) > λ − α, 4βσ(1 − σ) < λ − α

Eliminating redundancies, these conditions are equivalent to

4βσ(1 − σ) < λ − α < β and σ <
1

2

Under these conditions, we have two endemic equilibria 0 < s1
e < s2

e < 1. It is
clear from the sign of G(s) that s1

e and 1 are locally stable points and s2
e is unstable.

Therefore, if s(0) > s2
e then s(t) → 1 leading to a disease-free equilibrium, and

if s(0) < s2
e then s(t) → s1

e which leads again to either a stable endemic state or
host extinction depending on the sign of

λs1
e − μ − α

This means that we have host extinction if either

smin <
μ + α

λ
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Table 1 Stability analysis of the model (9) with σ = 0 (full sterilization) se = (λ − α)/β , Ne = [λ(λ −
α)/β − (α + μ)]/d

Condition α > λ λ − β < α < λ α < λ − β

R0 <1 <1 >1

Equilibrium

(0,0) Unstable Locally stable Locally stable

(0,1) Unstable Unstable Unstable

(0, se) – Unstable –

(Ne, se) – May or may not exist,
unstable if it exists

–

((β − μ)/d,1) Locally stable Locally stable Unstable

Outcome Infection cannot invade Infection cannot invade
but triggers bistability

Disease-induced extinction

or

smin >
μ + α

λ
and G

(
μ + α

λ

)
< 0

Notice that, with full sterilization (σ = 0), smin > (μ + α)/λ implies
G((μ + α)/λ) < 0, and hence one of these two conditions must be true. Also,
the existence conditions are all equivalent to λ > α. This means we will always
have bistability between the disease-free equilibrium and host extinction with σ

low enough. Otherwise, we have bistability between the disease-free equilibrium
and the endemic state given by

N1
e = λs1

e − μ − α

d

These results are summarized in Table 1 in the case of full sterilization (σ = 0).
They correspond to infections not able to invade the population (high virulence,
α > λ), infections that always induce population extinction (low virulence, α <

λ−β), and infections that can cause any of these endpoints to be attained, depending
on the initial state of the population; this latter situation occurs when

λ − β < α < λ (10)

(intermediate virulence). The most interesting of these situations is the one leading
to bistability: the endemic equilibrium at which both the population and the pathogen
coexist, if it exists, cannot be attained (is unstable), and the infection is either not able
to invade the population or otherwise causes the population to go extinct (Fig. 1). Note
that any of these two extreme outcomes is eventually fatal for the pathogen. Sample
dynamics of the model (9) leading to disease-free persistence versus population ex-
tinction are given in Fig. 2.
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Fig. 1 Phase space of the model (9) with σ = 0 (full sterilization) in case the bistability scenario occurs,
i.e., λ−β < α < λ. Parameter values: β = 0.75, α = 0.4, λ = 1, μ = 0.1, d = 0.1. The circles mark stable
(full) and unstable (open) model equilibria. A line parallel to the total population density axis delimits the
region of disease-free population persistence (infection cannot invade) from that of population extinction
(disease-induced extinction), and is the stable manifold of the unstable endemic equilibrium (Ne, se). If
(Ne, se) does not exist, e.g., for λ = 0.41, the horizontal line is formed by the stable manifold of the
extinction equilibrium (0, se)

Fig. 2 Temporal dynamics of
the model (9) with σ = 0 (full
sterilization) in case the
bistability scenario occurs, i.e.
λ − β < α < λ. Parameter
values: β = 0.75, α = 0.4,
λ = 1, μ = 0.1, d = 0.1. Initial
conditions leading to population
extinction: N(0) = 4,
s(0) = 0.78 (gray lines), and to
disease-free population
persistence: N(0) = 3,
s(0) = 0.82 (black lines)

In terms of R0, the condition (10) yields

0 <
α

β + α
< R0 < 1 (11)

So, the infection can extirpate the population even if R0 < 1, if the initial disease
prevalence is sufficiently high.

In the case of imperfect sterilization (σ > 0), the equilibria si
e (i = 1,2) become 0

and se given in Table 1 in the limiting case σ → 0. For σ sufficiently close to zero,
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Fig. 3 Extreme bistability still occurs for the model (9) provided that the degree of sterilization is suf-
ficiently large (degree of avoiding sterility σ is sufficiently small). Parameter values: β = 0.75, λ = 1,
μ = 0.1, d = 0.1. The parameter space is split into five regions: (i) where only the disease-free equilibrium
is locally stable (white), (ii) where only an extinction equilibrium is locally stable (dark gray), (iii) where
both the disease-free equilibrium and an extinction equilibrium are locally stable (black), (iv) where the
disease-free equilibrium and an endemic equilibrium of the infection are locally stable (middle gray), and
(v) where only an endemic equilibrium of the infection is locally stable (light gray)

we thus expect the smaller of si
e’s to also be close to zero. An example confirming

this result is presented in (Fig. 3).
Hence, the extreme bistability observed for σ = 0 occurs also in the case of an im-

perfect sterilization (Fig. 3). Interestingly, for some intermediate values of σ we also
observe bistability of the disease-free population state and the state of host-pathogen
coexistence (an endemic equilibrium; Fig. 3).

4 Discussion

Conventional models of sexually transmitted infections consider reproduction and
pathogen transmission as uncoupled processes. Whereas the pathogen transmission
term adopts one of a number of suggested forms (McCallum et al. 2001), the repro-
duction term is commonly modeled as linear in population density (e.g., Busenberg
and van den Driessche 1990; Thrall and Antonovics 1997), rarely with density depen-
dence included (e.g., Gao and Hethcote 1992; O’Keefe and Antonovics 2002; Hilker
et al. 2009; Hilker 2010). Whether developed by analogy with models of other disease
types or from first principles, this is fine in some situations but most likely inadequate
in others; see the Introduction for more on this issue. Here, we developed and ana-
lyzed a model of dynamics of sterilizing, sexually transmitted infections, which con-
sidered structural consistency between the processes of reproduction and pathogen
transmission, mediated by mating.

Coupling of the processes of reproduction and pathogen transmission significantly
impacts infection dynamics. Whereas a conventional model of the interaction we con-
sider in this article (i.e., the model (6) with the reproduction term β(S + σI)2/N
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replaced by β(S + σI)) predicts that a system state is always globally stable, be it
the disease-free state of the host population, host-pathogen coexistence, or disease-
induced host extinction (Pugliese 1990), our model predicts occurrence of an extreme
bistability regime, in which the host population either attains the disease-free state or
goes extinct due to pathogen, depending on the initial proportion of susceptible indi-
viduals: whereas low proportions imply population extinction, high proportions allow
the population to persist at the disease-free state. This extreme bistability regime is
triggered by highly sterilizing pathogens; it tends to wane with decreasing steriliza-
tion power of the infection. Endemic equilibria are in this case either unstable or
do not exist. Our results tend to be quite robust, since we prove them for any mat-
ing function from a broad class of commonly used, degree-one homogeneous mating
functions.

Why does the extreme bistability regime occur? The tight coupling of the pro-
cesses of reproduction and pathogen transmission causes the reproduction rate in the
model (6) to depend not only on the population density of reproductive individuals
(as is the case in conventional models), but also on the proportion of these individu-
als. As the degree of sterilization increases, more and more matings are lost to those
individuals that cannot reproduce (i.e., are not fertile). Moreover, as the proportion of
susceptible individuals decreases, the proportion of sterilized individuals increases,
the proportion of matings that result in birth decreases and eventually the population
goes extinct.

Note that the extreme bistability regime occurs for R0 < 1 (for R0 > 1, a highly
sterilizing pathogen triggers only host extinction). It thus corresponds to the situation
where the infection is not able to invade the host population when rare, but can make
it extinct once its (initial) prevalence is sufficiently high. One might term this situa-
tion “antiherd-immunity” or “antivaccination,” pointing to the fact that “inoculating”
a given proportion of the host population drives it to extinction, and thus prevents
or “vaccinates” the environment against its invasion if it corresponds to an invading
pest species. Indeed, the type of bistability generated by our model might possibly be
exploited to develop an efficient control tactic to eradicate an unwanted pest species.
With a pathogen having a sufficient degree of sterilization (and possibly also a suf-
ficient disease-induced mortality rate) at hand, it “suffices” to inoculate a minimum
number of individuals and the pathogen does the rest—ensures both pest eradication
and its self-destruction. Moreover, if by chance a small amount of the pathogen es-
capes the focal population, because of R0 < 1 it is unlikely that it will cause much
harm before it (quickly) dies out. Due to this, we might achieve the required safety
aspects of any pathogen to be used as a potential biocontrol agent.

That said, we need to address two related questions. How can one get a highly ster-
ilizing, sexually transmitted infection, given that both extreme bistability outcomes
are deleterious to the pathogen? And what types of populations our model is most
appropriate to? Highly sterilizing, sexually transmitted infections indeed appear to
exist (Lockhart et al. 1996; Knell and Webberley 2004; Sloan et al. 2008). In addi-
tion, both empirical (Sloan et al. 2008) and theoretical (Jaenike 1996; O’Keefe and
Antonovics 2002) studies suggest that selection on sterilizing pathogens will favor
high to complete sterilization. Assuming for the moment that our model is a cor-
rect representation of at least some host populations, a highly sterilizing pathogen
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triggering only host extinction (R0 > 1) or the bistability between host extinction
and disease-free host persistence (R0 < 1) indeed would not occur naturally. More-
over, application of the adaptive dynamics approach to evolution (Dieckmann 2002)
to our model suggested an evolutionary route to complete sterilization provided that
the degree of sterilization 1 − σ and the transmission rate λ were positively related,
a pattern suggested in the literature (Jaenike 1996; Sloan et al. 2008). We do not
provide any details here, but obviously we have here an example of evolutionary sui-
cide (Parvinen 2005). This implies that our extreme bistability regime can only be
a transient state of a pathogen, which can only exist if there is a persistent source
population of its “relative.” For this relative, the critical value of sterilization power
beyond which pathogens cannot persist (about 0.37 in Fig. 3) needs not be reached.
Indeed, O’Keefe and Antonovics (2002) found that in spatially structured populations
sterilization power evolved to intermediate degrees. A natural possibility of observ-
ing a highly sterilizing pathogen triggering the extreme bistability regime then might
be due to a pathogen that is endemic in a certain host (e.g., mildly sterilizing), but
has a strong sterilizing effect when affecting a different host (Jaenike 1996). An arti-
ficial way, tightly related to the above mentioned pest control implications, is then a
genetic manipulation of a more benign virus (Hardy et al. 2006). Sterilizing, sexually
transmitted pathogens can thus exist that demonstrate the extreme bistability under
some conditions, while persisting under other conditions.

Regarding the question of our model’s applicability, the only real difference be-
tween our model and conventional models of sterilizing, sexually transmitted infec-
tions, is consideration of structural consistency between the mechanisms of reproduc-
tion and pathogen transmission. Both model types are time-continuous so that both
suffer from all known limitations this kind of models (which form the overwhelming
majority of all existing epidemiological models) has: they essentially describe pop-
ulations having overlapping generations with close to continuous reproduction that
are relatively large, distributed in a homogeneous environment and able to interact
over large distances. The central assumption behind our consistency mechanism is
that the reproduction rate is proportional to the mating rate. That is, that the num-
ber of reproductive events per time step is proportional to the number of matings
per time step. So, in a way, we consider an endpoint of a continuum of potential
mating-reproduction relationships that occur in nature; the other endpoint is formed
by the conventional models in which mating and reproduction are decoupled. Inde-
pendent of its applicability, our study may provide insights into what can happen at
this endpoint. Quite likely, our assumption is not appropriate in all possible situations.
Sexually transmitted infections in humans provide a good example here since the re-
production control is strong and reproduction is not strongly linked to the number of
sexual contacts (which are responsible for disease transmission). Still, while our pro-
portionality assumption is mathematically the simplest form we can adopt (and we
can liken this, e.g., to linear death rates in many population models or linear divorce
rates in many demographic models), we think we can provide some cases from the
animal world where it can be acceptable.

Since we are considering a population model, and moreover a time-continuous
model, we cannot model any individual mating behavior in any detail. Rather, we
are restricted to modeling rates, that is, numbers per time step. Thus, all we can af-
ford is a phenomenological description of a mean output of a mating system, rather
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than any description of its details and any corresponding variability in mating suc-
cess. Our assumption of proportionality can be linked to any mating behavior from at
least two perspectives. In both, the meaning of mating rate is the number of matings
per unit time, where matings both within and outside couples are counted. First, if
M(NM,NF ) is the (total) mating rate, then M(NM,NF )dt is the number of mat-
ings per small time interval dt . Let dt be so small that at most one mating can oc-
cur within it. Moreover, let w be the probability of fertilization per mating event.
Then wM(NM,NF )dt is the number of reproduction events within dt . That is,
wM(NM,NF ) is the (total) reproduction rate. This perspective seems to be most
appropriate if the chance of fertilization per any mating event is roughly constant.
This may be the case, e.g., when ovulation in females is triggered by the copulation
act, such as in felines (Little 2001).

Our second perspective is as follows. Let R(NM,NF ) denote the (total) repro-
duction rate, that is, the number of reproduction events per unit time. Moreover,
let k be the average number of matings females that mate per unit time have (so
not all females, just those that mate). Finally, let w(k) be the probability that a fe-
male gets fertilized and reproduces given she had k matings. Then R(NM,NF ) =
w(k)M(NM,NF )/k since M(NM,NF )/k is the average number of females that
mate per unit time. Provided that k is roughly constant, we again have the reproduc-
tion rate proportional to the mating rate. This second perspective seems closer to the
idea that the more uniformly are matings distributed among females (again not all
females, just those that mate), the more linear is expected to be the actual relation-
ship between the reproduction rate and the mating rate. An example of when this may
hold is mate guarding behavior where males guard their mates until paternity is en-
sured (Kokko and Morrell 2005, and references therein) or a harem system in which
males again guard their harem against aliens (Shuster and Wade 2003). We can even
consider a combination of these two perspectives, such as in birds with extra-pairs
copulations, where “the probability of fertilization [thus] may be approximately pro-
portional to the relative number of pair copulations, if inseminations occur less than
a few hours apart” (Møller and Birkhead 1992).

To summarize, we tend to think that in many cases the mating system will de-
termine the particular form of the mating rate M(NM,NF ), while the chance of
fertilization per mating event and/or the distribution of matings over different mat-
ing females will affect the link between reproduction and mating rates—we expect
this relationship (close to) linear if the per mating chance of fertilization is (close to)
constant and/or the distribution of matings over mating females is (close to) uniform.

A few other epidemiological models exist that demonstrate bistability and even
tristability (Diekmann and Kretzschmar 1991; Hilker et al. 2009; Hilker 2010). The
observed bistability types include bistability between the disease-free equilibrium
and an endemic equilibrium (Diekmann and Kretzschmar 1991; Hilker et al. 2009;
Hilker 2010), bistability between the disease-free equilibrium and periodic fluctua-
tions around an endemic equilibrium (Diekmann and Kretzschmar 1991; Hilker et al.
2009), and most importantly from our perspective, bistability between the disease-
free equilibrium and an equilibrium corresponding to pathogen-driven extinction
(Hilker 2010). Unfortunately, this latter type of bistability was not discussed in Hilker
(2010) at all, as the author likely found it less interesting relative to the other dynam-
ical regimes his model generated.
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Nevertheless, the model we developed and analyzed in our article differs from that
of Hilker (2010) in two important aspects. First, contrary to Hilker (2010), we do not
assume that the host population challenges a strong Allee effect in the absence of
infection. Strong Allee effects refer to the situation where individual fitness declines
with population density, and where the per capita population growth rate becomes
negative once population density falls below an Allee threshold (Berec et al. 2007;
Courchamp et al. 2008). Presence of a strong Allee effect in the host population
keeps an extinction equilibrium locally stable also in the presence of infection, and
the extreme bistability regime of disease-free population persistence versus disease-
induced population extinction observed by Hilker (2010) is thus not triggered by the
pathogen itself. Our results imply that the extreme bistability regime exists also with-
out assuming an Allee effect. This is important, since many populations, including
those invading nonnative habitats, likely do not possess strong Allee effects. This is
not to say that populations with strong Allee effects cannot invade nonnative habi-
tats; they indeed can as is, for example, the case of the gypsy moth Lymantria dispar
(Tobin et al. 2009). Rather, this is to say that many invading species may not have an
Allee effect at all. In fact, strong Allee effects have so far been convincingly demon-
strated in several species only (Kramer et al. 2009), some of them invading, while
much more species have been found to successfully invade a variety of nonnative
habitats. Second, Hilker (2010) likely did not have any specific pathogen type in
mind. Here, we considered sterilizing, sexually transmitted pathogens for which we
developed our alternative modeling framework, since the sexual transmission route is
a necessary prerequisite for our central assumption of consistency between the pro-
cesses of reproduction and pathogen transmission.

In this article, we modeled dynamics of sterilizing, sexually transmitted infections,
suggesting a framework in which the processes of reproduction and pathogen trans-
mission were assumed structurally consistent as mediated by mating. We by no means
consider our model as a fundamental new vision, but rather develop and analyze an
alternative to conventional models used to describe this specific type of infectious
diseases. Even if the insights gained from our study might be of an interest to pest
control practitioners, we especially believe that the model we propose in this article
will open the way to further explorations of implications of consistency between the
processes of reproduction and pathogen transmission mediated by mating, that is,
implications of innerpoints of the mating-reproduction relationships continuum.
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