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Is more better? Higher sterilization of infected hosts

need not result in reduced pest population size
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Abstract We analyze the effect of sterilization in the infected hosts in several
epidemiological models involving infectious diseases that can be transmitted
both vertically and horizontally. Sterilizing pathogens can be used as pest con-
trol agents by intentionally inoculating the target population, with the goal
of reducing or eliminating it completely. Contrary to previous models that
did not include vertical transmission we found that the population size at the
endemic equilibrium may actually increase with higher levels of sterility. This
effect is proved to exist for low to high efficiencies of vertical transmission.
On the other hand, if the disease is sexually transmitted and the host repro-
duction and disease transmission are both consistently mediated by mating,
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we do not observe such a counter-intuitive effect and the population size in
the stable endemic equilibrium is decreasing with higher levels of sterility. We
suggest that models of the pest control techniques involving the release of
sterilizing pathogens have to carefully consider the routes such pathogens use
for transmission.

Keywords vertical transmission · pest control · sterilization

1 Introduction

Invasions of non-native species are a global and increasing threat to the func-
tion and diversity of ecosystems (Vitousek et al, 1997; Lockwood et al, 2007).
Among these, small mammals such as foxes, rabbits and mice have been repeat-
edly reported to be more damaging than any other vertebrate group (Eben-
hard, 1988; Courchamp et al, 2003). Whereas more traditional control methods
such as hunting, trapping and baiting have often been found inefficient (Dere-
dec et al, 2008), many disseminating pathogens enhancing pest mortality have
been found inhumane (Tyndale-Biscoe, 1994).

An alternative to these methods is an introduction of a sterilizing pathogen.
Virus-vectored immunocontraception (VVIC) has been proposed as a viable
technique for controlling small mammals (Hardy et al, 2006). VVIC assumes
a genetically engineered, species-specific virus that is intended to trigger an
autoimmune response whereby antibodies are produced against the species’
gametes and fertilization is thus blocked (Tyndale-Biscoe, 1994; Hardy et al,
2006). As an example, the myxoma virus and the murine cytomegalovirus
have been suggested as potential immunocontraceptives for rabbits and mice,
respectively (Hardy et al, 2006).

The introduction of additional transmission pathways may also increase the
effectiveness of the sterilizing pathogens. Altizer and Augustine (1997) showed
that vertical, in addition to horizontal, transmission widened the range of
parameters values for which the sterilizing pathogen could successfully control
the pest population. The efficiency of vertical transmission, i.e. the ability of
an infectious disease to be passed from mother to a newborn, varies depending
on the infectious agent and/or the possibility of treatment. It can be as low as
1–4% in the transmission of dengue virus in mosquitoes (Adams and Boots,
2010), but as high as ∼90%, and even complete, in the transmission of Orientia
tsutsugamushi in mites Leptotrombidium deliense (Frances et al, 2001).

Intuition suggests that as the degree of sterilization increases, the host
population size decreases. Therefore, when the host is at the same time a pest,
increasing sterility should at the same time improve our control efficiency
(quantified as the proportional decrease in equilibrium host size with respect
to its disease-free stable state). Many modeling studies on diseases without
vertical transmission support this view. For example, in their model studying
impacts of VVIC for pest reduction, Deredec et al (2008) found that an increase
in sterilization efficiency invariably caused the pest population to decrease. In
addition, they showed that virus choice should focus more on its sterilizing
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power rather than transmission efficiency. Berec and Maxin (2012) studied the
added value of increased life expectancy due to disease-induced sterilization
on pest control effectiveness, finding again that an increase in sterilization
efficiency brought about lowered equilibrium population size.

In this paper, we study a series of infectious disease models with vertical
transmission and several different types of horizontal transmission (mass ac-
tion incidence, asymptotic incidence and standard incidence). Our purpose is
two-fold. First, we wish to analyze how the introduction of vertical transmis-
sion may change the pest control efficiency relative to a model in which this
transmission route is absent. Second, we wish to see how these results change in
the case of a sexually transmitted disease when we consider structural consis-
tency between the processes of host reproduction and disease transmission, i.e.
when we assume that both are mediated by mating and modeled by the same
functional form (Berec and Maxin, 2013). Accounting for such consistency has
already proved to change the results of conventional epidemiological models
under some conditions (Berec and Maxin, 2013). In particular, we show that
without the consistency assumption and contrary to intuition, under certain
conditions, increasing the pathogen’s ability to sterilize the host is not neces-
sarily beneficial from the pest control perspective because it tends to increase
the population size at equilibrium.

The paper is structured as follows. In the next section, we formulate and an-
alyze a conventional epidemiological model with logistic host growth in the ab-
sence of infection, vertical and horizontal disease transmission, disease-induced
mortality and disease-reduced reproduction. As the horizontal incidence term,
we consider in sequence mass action incidence, asymptotic incidence and stan-
dard incidence. Then, we formulate and analyze a two-sex epidemiological
model with both vertical and sexual transmission in which we assume that the
host reproduction process and the (sexual) disease transmission process are
both mediated by mating, a feature to be expected in many realistic cases.
We use two types of mating function, a degree-one homogeneous mating func-
tion which results in a standard-incidence-like disease transmission term and
a mating function accounting for mate-finding Allee effects which results in
an asymptotic-incidence-like disease transmission term. In all models we focus
on how endemic equilibria vary with the disease sterilization efficiency, and
discuss the results from the perspective of using sterilizing infectious diseases
as potential pest control agents.

2 The classic one-sex model

In this section we consider the following model with both horizontal and ver-
tical transmission:

dS
dt

= β(S + ξσI)− Φ(N)SI
N

− µ̄S,

dI
dt

= β(1 − ξ)σI + Φ(N)SI
N

− µ̄I − αI.
(1)
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In this model, N = S+I is the total population size, µ̄ = µ+bN is the density-
dependent natural mortality rate and Φ(N) is a general disease transmission
term. In particular, Φ(N) can be λ (standard incidence), λN (mass action
incidence) or λN

c+N
(asymptotic incidence). Moreover, β is the host birth rate

and ξ is the probability that an offspring of an infected host is susceptible.
Therefore 1− ξ is the efficiency of vertical transmission, i.e. the proportion of
infected newborns from an infected parent. Finally, σ is the disease sterilization
efficiency, i.e. the reduction in fertility of infected individuals and α is the
additional mortality rate caused by the disease. Thus, 0 ≤ ξ ≤ 1 and 0 ≤
σ ≤ 1. We also assume β > µ which ensures that the population does not go
extinct in the absence of the disease. The model (1) was analyzed by Pugliese
(1990), and we summarize its main results below.

For the time being we assume that Φ(N) is a (continuously) differentiable
function with respect to N . Moreover, we assume this function is increasing
(Φ′(N) > 0). This effectively rules out standard incidence which is analyzed
in more detail at the end of this section and in Appendix A. Let us denote

K :=
β − µ

b
and Ki :=

βσ − µ− α

b
.

We can think of K as the carrying capacity of the host population in the
absence of infection. The parameter Ki represents the carrying capacity of the
infected population if there were no susceptible individuals; this is possible
only in the case of full vertical transmission (ξ = 0). With this notation, the
basic reproduction number of the infection is (noting that β = µ+ bK)

R0 :=
Φ(K) + β(1− ξ)σ

µ+ bK + α
=

Φ(K) + β(1− ξ)σ

β + α
. (2)

The model (1) may have four equilibrium points:

(So, Io) = (0, 0), (S̄, Ī) = (K, 0), (Ŝ, Î) = (0,Ki),

(S∗, I∗) =

(

N∗(µ+ bN∗ + α− βσ)

β(1− σ) + α
,
N(β − µ− bN∗)

β(1 − σ) + α

)

,

with N∗ satisfying

Φ(N∗) =
[β(1 − σ) + α][β(1 − ξ)σ − µ− bN∗ − α]

βσ − µ− bN∗ − α
. (3)

We note that the equilibrium (Ŝ, Î) = (0,Ki) exists only in the case of full
vertical transmission (ξ = 0), i.e. when all newborns from the infected parent
are infected. For the endemic equilibrium (S∗, I∗) to be feasible we require
that

βσ − α < µ+ bN∗ < β.

From Pugliese (1990) the stability results are:

1. The case of imperfect vertical transmission 0 < ξ < 1:
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(a) If R0 < 1 or Φ(K) < β[1− (1 − ξ)σ] + α then (S̄, Ī) is globally stable.
(b) If R0 > 1 or Φ(K) > β[1− (1− ξ)σ]+α then (S∗, I∗) is globally stable.

2. The case of full vertical transmission ξ = 0:

(a) If R0 < 1 or Φ(K) < β(1 − σ) + α then (S̄, Ī) is globally stable.
(b) If R0 > 1 and Φ(Ki) < β(1 − σ) + α < Φ(K) then (S∗, I∗) is globally

stable.
(c) If R0 > 1 and Φ(Ki) > β(1 − σ) + α then (Ŝ, Î) is globally stable.

The main issue we consider in this section is how the total population size
at an endemic equilibrium responds to the increasing level of sterility (i.e. de-
creasing σ). This has practical implications for population control since one of
the techniques used to control unwanted pest populations consists of releasing
a sterilizing pathogen into it, with the aim to suppress host reproduction and
hence its total population size.

Differentiating the equation (3) with respect to σ we obtain

dN∗

dσ
=

β3σ2(ξ − 1) + β2(µ+ bN∗ + α)(ξ + 2σ(1− ξ))− β(µ+ bN∗ + α(1− ξ))(µ + bN∗ + α)

Φ′(N∗)[µ+ bN∗ + α− βσ]2 + bβξσ(α + β − βσ)
.

For the full vertical transmission (ξ = 0), this derivative is
(

dN∗

dσ

)

ξ=0

= − β

Φ′(N∗)
< 0.

This implies that, at the endemic equilibrium, the total population size actu-
ally increases with the increasing level of sterility (i.e. decreasing σ). On the
other hand, for no vertical transmission (ξ = 1), we have

(

dN∗

dσ

)

ξ=1

=
β(µ + bN∗ + α)(β − µ− bN∗)

Φ′(N∗)[µ+ bN∗ + α− βσ]2 + bβσ[α + β(1− σ)]
> 0.

That is, in the absence of vertical transmission, the population at the endemic
equilibrium will always decrease with the increasing level of sterility (i.e. de-
creasing σ).

Due to continuity, there are certain values of ξ for which dN∗/dσ has
at least one critical point. By this we mean that N∗ as a function of σ will
decrease until a certain threshold after which it will increase. In Fig. 1 we show
a contour plot of N∗ as a function of σ and ξ for the mass action incidence
(Φ(N) = λN) and the other parameters fixed at some values. Notice that if ξ
is greater than a certain threshold (i.e. not enough vertical transmission) then
N∗ will be increasing in σ whereas if ξ is below that threshold then N∗ will
first decrease and then increase. Put differently, increasing the level of sterility
beyond a certain value (i.e. lowering σ) no longer reduces the population size,
but rather worsens the control effectiveness, defined as E = 1−N∗/K.

An analogous example for the asymptotic incidence (Φ(N) = λN/(c+N))
is given in Fig. 2. Here we need to distinguish two cases. First, when λ > α+β
the endemic equilibrium (S∗, I∗) exists and is globally stable for all 0 ≤ ξ ≤ 1
and 0 ≤ σ ≤ 1 and we observe a pattern similar to that in Fig. 1: a critical
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Fig. 1: The effect of changing the sterilization efficiency σ and the level of vertical trans-
mission ξ in the model (1) on the total population size at the endemic equilibrium. Disease
transmission occurs through mass action incidence. Parameter values: β = 1.5, µ = 1,
b = 0.002, λ = 0.1, α = 0.02. In the contour plots, the lighter the color is the higher the
value of N∗ is.

value of ξ exists such that below it the control efficiency initially increases
with the increasing level of sterility, but later on this trend chops around and
the control efficiency decreases with the increasing level of sterility. Second,
when λ < α + β the endemic equilibrium does not exist for high ξ and low
σ where the disease-free equilibrium (K, 0) is instead globally stable. Here
the concave curve at which the endemic equilibrium ceases to exist forces
endemic equilibrium isolines to also be concave. Hence, we again observe the
control efficiency to decrease (or the endemic equilibrium to increase) with the
increasing level of sterility.

In the case of standard incidence (Φ(N) = λ) we can carry out the full
analysis of the monotonicity of N∗ with respect to σ for any intermediate
value of vertical transmission efficiency ξ. Denoting

σ̄ :=
(α+ β − λ)(1 − ξ) +

√

ξλ(1 − ξ)(α + β − λ)

β(1 − ξ)
and

σR :=
α+ β − λ

β(1− ξ)
,

we provide the main result in the theorem below while the details of its proof
are given in Appendix A.

Theorem 1 Assuming the intrinsic mortality rate µ is low enough to pre-
vent disease-induced population extinction, the population size at an endemic
equilibrium N∗ varies with the sterilization efficiency σ as follows:

1. If λ > α+ β then N∗(σ) is increasing on (0, 1) and the disease is endemic
for all σ and ξ;

2. If λ < α+β and max
{

α+β−λ
βσ

, λ(α+β−λ)
α2+λ(β−α)

}

< 1−ξ then N∗(σ) is decreasing

on (σR, σ̄) and increasing on (σ̄, 1).
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Fig. 2: The effect of changing the sterilization efficiency σ and the level of vertical trans-
mission ξ in the model (1) on the total population size at the endemic equilibrium. Disease
transmission occurs through asymptotic incidence. Parameter values: β = 1.4, µ = 0.2,
b = 0.002, α = 0.01, c = 10; we set λ = 1.5 in panel A, which corresponds to λ > α+β, and
λ = 1.3 in panel B, which corresponds to λ < α + β. In the contour plots, the lighter the
color is the higher the value of N∗ is. The white area in panel B corresponds to parameter
combinations where the disease-free equilibrium (K, 0) is globally stable.

3. If λ < α+β and α+β−λ
βσ

< 1− ξ < λ(α+β−λ)
α2+λ(β−α) then N∗(σ) is decreasing on

(σR, 1).

These cases are illustrated in Fig. 3. As with asymptotic incidence, we again
distinguish two situations. Now, however, when the endemic equilibrium exists
and is globally stable for all 0 ≤ ξ ≤ 1 and 0 ≤ σ ≤ 1 (which again occurs
when λ > α + β), the control efficiency always increases with the increasing
level of sterility. On the other hand, when λ < α + β, we observe the same
pattern as with asymptotic incidence in Fig. 2B: the control efficiency initially
increases and then decreases with the increasing level of sterility.

3 The one-sex model with consistency between host reproduction

and disease transmission

We now consider a sterilizing, sexually transmitted disease where the host
reproduction and disease transmission are both mediated by mating. Hence,
the mating function (denoted as M(F,M)) appears in both the reproduction
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Fig. 3: The effect of changing the sterilization efficiency σ and the level of vertical trans-
mission ξ in the model (1) on the total population size at the endemic equilibrium. Dis-
ease transmission occurs through standard incidence. Parameter values: β = 1.4, µ = 0.2,
b = 0.002, α = 0.01; we set λ = 1.5 in panel A, which corresponds to λ > α+β, and λ = 1.3
in panel B, which corresponds to λ < α+β. In the contour plots, the lighter the color is the
higher the value of N∗ is. The white area in panel B corresponds to parameter combinations
where the disease-free equilibrium (K, 0) is globally stable. In both panels, the darkest grade
of gray color corresponds to disease-induced population extinction.

and disease transmission terms of the epidemiological model:

S′
f =

βγfM(F,M)
FM

[SfSm + ξ(σf IfSm + σmImSf + σfσmIfIm)]− λM(F,M)
FM

SfIm − µ̄fSf ,

S′
m = βγmM(F,M)

FM
[SfSm + ξ(σf IfSm + σmImSf + σfσmIf Im)]− λM(F,M)

FM
SmIf − µ̄mSm,

I ′f =
βγfM(F,M)

FM
(1− ξ)(σf IfSm + σmImSf + σfσmIfIm) + λM(F,M)

FM
SfIm − µ̄fIf − αfIf ,

I ′m = βγmM(F,M)
FM

(1− ξ)(σf IfSm + σmImSf + σfσmIfIm) + λM(F,M)
FM

SmIf − µ̄mIm − αmIm.
(4)

Here Sf , Sm are the female and male susceptible populations and If , Im
are their infectious counterparts. Furthermore, F = Sf + If , M = Sm + Im,
N = F+M , µ̄f = µf+bN and µ̄m = µm+bN . In addition, ξ is the proportion
of susceptible newborns from infected parents, σf and σm are the fertility
reduction coefficients for infected females and males, respectively, and γf and
γm are the probabilities of a newborn being a female or male (γf + γm = 1).

The structure of the model (4) arises as a consequence of considering rates
at which different classes of females and males mate. Assuming random mating
then for example the rate at which susceptible females and susceptible males
mate is a product of the total rate at which females and males of any type
mate, M(F,M), the probability that the female is susceptible, Sf/F , and the
probability that the male is susceptible, Sm/M . And similarly for the three
remaining possibilities.
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A variety of mating functions has been proposed, most of which originat-
ing in the demographic literature where they are commonly referred to as
marriage functions (Iannelli et al, 2005). Of these, most demographic and eco-
logical two-sex models use mating functions that are degree-one homogeneous
(Caswell and Weeks, 1986; Hadeler et al, 1988; Castillo-Chavez and Huang,
1995; Lindström and Kokko, 1998; Iannelli et al, 2005; Rankin and Kokko,
2007; Miller et al, 2007; Miller and Inouye, 2011, 2013), assuming that

M(ηF, ηM) = ηM(F,M), for any positive F,M, η.

In our model, we use a harmonic mean mating function (a degree-one ho-
mogeneous function resulting in standard-incidence-like disease transmission)
and a mating function accounting for mate-finding with Allee effects (not a
degree-one homogeneous function resulting in asymptotic-incidence-like dis-
ease transmission).

This model is too complex to be analyzed in its generality. Analytical re-
sults are possible by making various simplifying assumptions and we provide
these results in the subsections that follow. Also, we accompany these ana-
lytical results with numerical simulations that span the whole range of σ and
ξ values. The main insight here is that for both mating functions we use the
total population size at the endemic equilibrium N∗ is no longer increasing
with higher levels of sterility σ.

3.1 The one-sex model derived from the model (4) with a harmonic mean
mating function

Consider the harmonic mean mating function

M(F,M) = w
FM

F +M
(5)

for a positive scaling constant w (Lindström and Kokko, 1998; Iannelli et al,
2005; Miller and Inouye, 2011, 2013). Assuming equal sex-related parameters
we can reduce the model (4) to a planar system as follows. The assumptions
µf = µm := µ, αf = αm := α and γf = γm = 1/2 imply that

Sf = Sm :=
S

2
, If = Im :=

I

2
and F = M :=

N

2
.

Thus, the model (4) becomes

S′ = β̂
N
[S2 + ξ(2σSI + σ2I2)]− λ̂

N
SI − µ̄S,

I ′ = β̂
N
(1− ξ)(2σSI + σ2I2) + λ̂

N
SI − µ̄I − αI.

(6)

Here we also used the fact that M
(

N
2 ,

N
2

)

= N
2 M(1, 1) for the harmonic mean

mating function (5) and we denoted β̂ := β
2wM(1, 1) and λ̂ := λwM(1, 1).
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The basic reproduction number of the infection described by the model (6)
can be derived from the condition dI/dt > 0 or

λ̂ > α+ β̂[1− 2σ(1− ξ)]. (7)

Notice that this inequality is satisfied for any λ̂ > 0 provided that

α+ β̂[1− 2σ(1− ξ)] < 0 or σ(1 − ξ) >
α+ β̂

2β̂
.

Otherwise, if σ(1 − ξ) < (α+ β̂)/(2β̂) then

R0 =
λ̂

α+ β̂[1− 2σ(1− ξ)]
.

The model (6) rewritten into the proportion of susceptibles x = S/N and the
total population size N is

x′ = (1 − x)G(x),

N ′ = N{β̂[x+ σ(1 − x)]2 − µ̄− α(1− x)}
(8)

where

G(x) = β̂(1− σ)2x2 − [β̂σ2(1 + ξ)− 2σβ̂ξ + λ̂− α]x+ β̂ξσ2.

Since the first equation is closed in x we will analyze it first. In addition to
the obvious equilibrium x∗ = 1 any other equilibrium is a root of G(x) in the
feasible interval (0, 1). The main result concerning the model (8) is given in
the following theorem (the proof is given in Appendix B):

Theorem 2 For the epidemiological model (8), the population size at an en-

demic equilibrium N∗ decreases with the increasing level of sterility
(

dN∗

dσ
> 0

)

in the following particular cases:

1. Full vertical transmission (ξ = 0),
2. No vertical transmission (ξ = 1),
3. Any level of vertical transmission ξ assuming no disease-induced mortality

(α = 0) and equal birth and transmission rates (β̂ = λ̂).

Numerical simulations suggest that the same is true also for any ξ > 0 (Fig. 4).
Note that although in panel B of Fig. 4 the curve delimiting the white area is
also concave, compared with panels B in Figs 2 and 3 the control efficiency
here never decreases with the increasing level of sterility.
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Fig. 4: The effect of changing the sterilization efficiency σ and the level of vertical trans-
mission ξ in the model (6) on the total population size at the endemic equilibrium. Disease
transmission occurs through a standard-incidence-like function. Parameter values: β = 1.4,
µ = 0.2, b = 0.002, α = 0.01; we set λ = 1.5 in panel A, which corresponds to λ > α + β,
and λ = 1.3 in panel B, which corresponds to λ < α+β. In the contour plots, the lighter the
color is the higher the value of N∗ is. The white area in panel B corresponds to parameter
combinations where the disease-free equilibrium (K, 0) is globally stable. In both panels, the
darkest grade of gray color corresponds to disease-induced population extinction.

3.2 The one-sex model derived from the model (4) with a mating function
accounting for mate-finding Allee effects

Consider now the mating function

M(F,M) = w
FM

F +M + c
, where w > 0, c > 0. (9)

This function accounts for mate-finding Allee effects whereby individuals in
low-density populations challenge reduced opportunities for finding a mate
and hence for successful reproduction Boukal and Berec (2002); Courchamp
et al (2008). Using the same assumptions on the parameters as in the previous
subsection the one-sex reduced model is now as follows:

S′ = β
M(N

2
,N
2
)

N2 [S2 + ξ(2σSI + σ2I2)]− (2λ)
M(N

2
,N
2
)

N2 SI − µ̄S,

I ′ = β
M(N

2
,N
2
)

N2 (1 − ξ)(2σSI + σ2I2) + (2λ)
M(N

2
,N
2
)

N2 SI − µ̄I − αI.

(10)

Also here, the model (10) can be rewritten into the proportion of susceptibles
x = S/N and the total population size N :

x′ = βm(N)
N

[x2 + ξ(2σx(1 − x) + σ2(1− x)2)− x(x + σ(1− x))2] + x(1 − x)
[

α− λ̄m(N)
N

]

,

N ′ = N{βm(N)
N

[x+ σ(1 − x)]2 − µ̄− α(1 − x)}
(11)
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where we denoted

m(N) := M
(

N

2
,
N

2

)

=
w

4

N2

N + c
(12)

and λ̄ := 2λ.
The equation for the proportion x of susceptible individuals is no longer

independent of N . To simplify the analysis we assume from here on that there
is full vertical transmission (ξ = 0) and no disease-induced mortality (α = 0).
The model becomes

x′ = m(N)
N

x(1− x)[β(1 − σ)2x− βσ2 − λ̄],

N ′ = N{βm(N)
N

[x+ σ(1 − x)]2 − µ̄}
(13)

We have the following possible equilibrium points with non-zero population
size:

1. Disease-free equilibrium (DFE), (1, N̄) where N̄ satisfies

β
m(N̄)

N̄
= µ+ bN̄ ,

2. Susceptible extinction equilibrium (SEE), (0, N̂) where N̂ satisfies

βσ2m(N̂)

N̂
= µ+ bN̂ ,

3. Endemic equilibrium, (x∗, N∗) with

x∗ =
βσ2 + λ̄

β(1 − σ)2

and N∗ satisfying

β
m(N∗)

N∗
[x∗ + σ(1 − x∗)]2 = µ+ bN∗.

Note that in each case there is an additional possible extinction equilibrium if
µ is big enough or, due to the Allee effect, if c is big enough. The main result
for the model (13) is summarized in the following theorem while its proof is
given in Appendix C:

Theorem 3 Assuming full vertical transmission and no disease-induced mor-
tality in the model (13), the only possible stable endemic equilibrium is SEE
and the population size at this equilibrium decreases with the increasing level

of sterility
(

dN∗

dσ
> 0

)

.

Numerical simulations suggest that the same is true also for ξ > 0 and α > 0
(Fig. 5). Note that we get the same qualitative result as for the model with the
harmonic mean mating function analyzed in the previous subsection. Hence,
the endemic equilibrium can only decrease with the increasing level of sterility
of the infection.
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Fig. 5: The effect of changing the sterilization efficiency σ and the efficiency of vertical
transmission ξ in the model (10) on the total population size at the endemic equilibrium.
Disease transmission occurs through the asymptotic-incidence-like function. Parameter val-
ues: β = 1.4, µ = 0.2, b = 0.002, α = 0.01; we set λ = 1.5 in panel A, which corresponds to
λ > α+β, and λ = 1.3 in panel B, which corresponds to λ < α+β. In the contour plots, the
lighter the color is the higher the value of N∗ is. The white area in panel B corresponds to
parameter combinations where the disease-free equilibrium (K, 0) is globally stable. In both
panels, the darkest grade of gray color corresponds to disease-induced population extinction.

3.3 The two-sex model derived from the model (4) with a harmonic mean
mating function and sex-specific sterilization rates

In this subsection we aim to study the impact of sex-specific sterilization rates
(i.e. σf 6= σm). In order to make an analysis possible we keep all the other sim-
plifying assumptions (i.e. equal sex-related parameters and no disease-induced
host mortality). Below is the corresponding model in the total populations of

females and males and the female and male susceptible proportions x =
Sf

F

and y = Sm

M
:

F ′ =
βγfM(F,M)

FM
(Sf + σfIf )(Sm + σmIm)− µ̄F,

M ′ = βγmM(F,M)
FM

(Sf + σfIf )(Sm + σmIm)− µ̄M

x′ =
βγfM(F,M)

F
{xy + ξ[σfy(1− x) + σmx(1− y) + σfσm(1− x)(1 − y)]}−

−λM(F,M)
F

x(1− y)− M(F,M)
F

x[x+ σf (1− x)][y + σm(1− y)],

y′ =
βγfM(F,M)

M
{xy + ξ[σfy(1− x) + σmx(1− y) + σfσm(1− x)(1 − y)]}−

−λM(F,M)
M

y(1− x)− M(F,M)
M

y[x+ σf (1− x)][y + σm(1− y)].
(14)
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Assuming a 1:1 sex ratio at birth (γf = γm = 1/2), we can study the following
planar system in x and y:

x′ = M(1, 1)
{

β
2 [xy(1 − x) + (ξ − x)(σfy(1− x) + σmx(1 − y)+

+σfσm(1 − x)(1 − y))]− λx(1 − y)},

y′ = M(1, 1)
{

β
2 [xy(1 − y) + (ξ − y)(σfy(1− x) + σmx(1− y)+

+σfσm(1 − x)(1 − y))]− λy(1 − x)}.

(15)

This system admits the following equilibrium points: (1, 1), (x1, x1) and
(x2, x2) with

x1,2 =
2λ+ βσfσm + βξ(σfσm − σf − σm)±

√
∆

2β(1− σf )(1 − σm)
where

∆ := [2λ+ βσfσm + βξ(σfσm − σf − σm)]2 − 4β2ξσfσm(1− σf )(1− σm).

The stability of these equilibria is resolved in the following theorem (proof
is given in Appendix D):

Theorem 4 Concerning dynamics of the model (15) and denoting

A(ξ) = 1− (σf + σm) + ξ(σf + σm),

B(ξ) = 2− 2(σf + σm) + σfσm + ξ(σf + σm − σfσm),

C(ξ) = [ξ(σf + σm − σfσm)− σfσm] + 2
√

ξσfσm(1− σf )(1 − σm),

we distinguish the following three cases:

1. 2λ
β

> A(ξ): (1, 1) unstable, (x1, x1) stable and (x2, x2) does not exist;

2. C(ξ) < 2λ
β

< min{A(ξ), B(ξ)}: (1, 1) stable, (x1, x1) stable and (x2, x2)
unstable. In this case we have bistability between the DFE and the endemic
equilibrium (which becomes the SEE for full vertical transmission ξ = 0);

3. In all other cases (1, 1) is stable and there is no endemic equilibrium.

From this theorem we see that the only case that guarantees some form of
control effectiveness is the first one (in all the other cases the DFE is locally
stable).

Interestingly, the last case when no control effectiveness is achieved can
happen due to too much sterility if the infection rate is too low. For example,
if 2λ

β
< min{A(ξ), C(ξ)} then only (1, 1) is stable. This is only possible if

A(ξ) > 0 which is equivalent to

σf + σm <
1

1− ξ
.
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This means that there is at least one situation where increasing the sterility
(i.e. decreasing σf or σm) may prevent the disease from invading. It is also clear
that this is tied up with the vertical transmission: without vertical transmission
(ξ = 1) this case will have no implications for the values of σf or σm.

We now analyze whether the population size at the endemic equilibrium
increases or decreases with the increasing level of sterility. The theorem above
implies that (x1, x1) is the only stable endemic proportion of the susceptible
females and males. From the first equation of the model (14) we see that

F (t) →
β
2M(1, 1)[x1 + σf (1− x1)][x1 + σm(1− x1)]− µ

2b
.

Notice that in the case of σf = σm := σ the monotonicity of the total popu-
lation size is the same as that of the function

q(σ) := x1 + σ(1− x1).

In the case of full vertical transmission (ξ = 0) the endemic equilibrium be-
comes the SEE (x∗ = 0) and q(σ) = σ. Thus, in this case, the total population
size increases with σ. Below we show that the population size increases with σ
in the absence of vertical transmission as well. Indeed, if ξ = 1 the thresholds
in Theorem 4 become

A(1) = 1, B(1) = 2(1− σ) and C(1) = 4σ(1 − σ).

We thus have two cases:

1. 2λ
β

> 1 in which case only (x1, x1) is stable;

2. 4σ(1 − σ) < 2λ
β

< 1 and σ < 1
2 in which case we have bistability between

the DFE and the endemic equilibrium.

Notice also that, in this case,

q(σ) =
λ−

√

λ(2βσ2 − 2βσ + λ)

β(1 − σ)

and

q′(σ) =
λ[
√

λ(2βσ2 − 2βσ + λ)− λ+ β(1− σ)]

β(1 − σ)2
√

λ(2βσ2 − 2βσ + λ)
.

With some computation we see that q′(σ) > 0 whenever either λ < β(1 − σ)
or 2λ > β. One of these conditions is always satisfied given the conditions
in Theorem 4. Therefore, in the absence of vertical transmission the total
population size is also increasing with σ. Numerical simulations suggest that
this is also the case for any intermediate level of vertical transmission 0 < ξ <
1.

If the pathogen is sex-specific, i.e. it only reduces the fertility in females
or males, we can see that the DFE is never stable in the case of full vertical
transmission. Indeed, if σf = 1 and ξ = 0 then A(ξ) = −σm and the condition
2λ
β

> A(ξ) in Theorem 4 is trivially satisfied. Analogously, if σm = 1 and ξ = 0

then A(ξ) = −σf and the condition 2λ
β

> A(ξ) is also trivially satisfied. This
means that if the sterilization is sex-specific and the vertical transmission is
high enough, the pest control measure never fails.
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4 Conclusions and discussion

In this paper we analyzed the effect of sterilization in the infected hosts in
several epidemiological models involving infectious diseases that can be trans-
mitted both vertically and horizontally. Our particular focus has been on how
the host population size at an endemic equilibrium responds to an increasing
level of sterilization. This question has been motivated by the fact that steril-
izing pathogens can be used as pest control agents by intentionally inoculating
the target population, with the goal of reducing or eliminating it completely.
We addressed this question using two types of epidemiological models of SI
(susceptible-infectious) type. The first type was a conventional model with
logistic host growth in the absence of infection, vertical and horizontal dis-
ease transmission, disease-induced mortality and disease-reduced reproduction
(Pugliese, 1990; Zhou and Hethcote, 1994). For the second type, we assumed
that the host reproduction process and the (sexual) disease transmission pro-
cess were both mediated by mating and modeled by the same structural term,
a feature to be expected in many realistic cases (Berec and Maxin, 2013).

Contrary to previous models that did not include vertical transmission (e.g.
Deredec et al, 2008; Berec and Maxin, 2012) we found that in the conventional
model the population size at the endemic equilibrium may actually increase
with higher levels of sterility. This effect appears to be most pronounced for
mass action and asymptotic types of infection incidence, and occurs only to
a limited extent for standard incidence. On the other hand, if the disease
is sexually transmitted and the host reproduction and disease transmission
are both consistently mediated by mating, we do not observe such a counter-
intuitive effect and the population size at a stable endemic equilibrium is
decreasing with higher levels of sterility. For the latter model type, this holds
equally for both mating functions we use, a degree-one homogeneous mating
function which results in a standard-incidence-like disease transmission term
and a mating function accounting for mate-finding Allee effects which results
in an asymptotic-incidence-like disease transmission term.

Pugliese (1990) and Zhou and Hethcote (1994) studied models of which our
conventional model is just a special case. Interestingly, however, they did not
observe this type of behavior that the population size at the endemic equilib-
rium may actually increase with higher levels of sterility. In fact, both authors
focused on a quite detailed, standard analysis of their epidemiological mod-
els, consisting of looking for thresholds of disease persistence and existence
and stability of model equilibria. This is because their focus was analyzing
an infectious model in its generality where these thresholds are the most im-
portant features to look for. From the perspective of pest control, however,
the objectives are different and somewhat contrary to other applications. Here
we want disease persistence (so that the sterilizing agent can establish in the
target host) and, in addition, we want a reduction of the population size at
the endemic equilibrium. As we can see, simply changing the attention to a
more specific case can be the way to get unexpected insight into the system
under study.
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The observation that the population size at the endemic equilibrium may
actually increase with higher levels of sterility has important consequences
for a potential of this manipulation for population control. Contrary to what
one could expect, too much sterility may simply mean a decrease in pest
control efficiency. Optimum values of sterility levels for any particular efficiency
of vertical transmission can be deducted from contour plots we draw in the
main text or any of their equivalents. When we do not limit ourselves to
the endemic equilibria, we may observe this counter-intuitive effect also in
the models with the host reproduction and disease transmission mediated by
mating. In particular, if λ < α + β (panels B in all of our figures) then too
much sterility causes the disease to become non-persistent, and the disease-free
equilibrium becomes globally stable. On the other hand, this abrupt change
in system stability when sterility levels increase is preceded by a region of
disease-induced extinction, so that it plays a role just if we abruptly change
the sterility level from low to too high values.

One of the techniques that exploit sterilizing pathogens is the virus-vectored
immunocontraception (VVIC) (Tyndale-Biscoe, 1994; Hardy et al, 2006). This
method is sex-specific, triggering an autoimmune response whereby antibod-
ies are produced against the gametes of a sex and fertilization is thus blocked.
The full two-sex model that we analyzed in the last subsection is its more
appropriate description. For this model, we showed that an increase in the
host population size cannot happen as the sterilization efficiency increases. In
addition, we showed that when just one sex is (partially) sterilized then, when
the vertical efficiency is perfect, the disease-free equilibrium cannot be stable.
This implies that if our preference is to assure a degree of pest control in the
first place instead of to maximize it then this is a way of how to do that.
Put from another perspective, while strategies that sterilize both sexes can be
more effective as regards the degree of population control, some combinations
may make the parasite non-persistent and no control is then guaranteed.

Why did not Deredec et al (2008) and Berec and Maxin (2012) observe any
increase in the host population size as a results of a sterility level increase?
Actually, all of our models predict that once there is no vertical transmission
(i.e. ξ = 1) then the systems behaves as expected: the host population size
decreases as the sterility level increases. Hence, it is vertical transmission that
is responsible for this effect. Whether we need low or high levels of vertical
transmission to observe the effect depends on values of the other model param-
eters. Interestingly, any adverse effect of parasites, including disease-induced
mortality and disease-reduced reproduction, negatively affects propensity of
parasites to evolve vertical transmission (Lipsitch et al, 1995; Altizer and Au-
gustine, 1997; Bernhauerova and Berec, 2014). It would thus be very interesting
to see the extent to which such an association could naturally evolve.

Do pathogens actually considered for pest control involve vertical trans-
mission? And if yes, can their level of vertical transmission be so large that the
phenomena discussed in this paper are likely? Pathogens as agents regulating
populations are commonly used against insect pests. They mostly come from
baculoviruses (Cory and Myers, 2003), but other viruses such as densoviruses
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from the family Parvoviridae can also be found useful (Hirunkanokpun et al,
2008). Of baculoviruses, vertical transmission is especially common in nucle-
opolyhedroviruses and cypoviruses in which it can reach levels as high as 50%
(Kukan, 1999) and commonly about 10-20% (Kukan, 1999; Fuxa et al, 2002).
Similarly, some mosquito densovirus strains showed 20-50% vertical transmis-
sion (Hirunkanokpun et al, 2008). Figures 1-3 show that 50% levels of vertical
transmission are indeed large for the phenomena observed in this study to be
likely. Playing with model parameters, we were able to observe these phenom-
ena for levels of vertical transmission as low as 15-20% but in general, the
effect is pronounced the more the higher the level of vertical transmission is.
On the other side of spectrum of pathogens with both horizontal and verti-
cal transmission that are used to control insect pests are Wolbachia bacteria.
These bacteria reach very high levels of vertical transmission and very low
levels of horizontal transmission (Haine et al, 2005). However, these bacteria
also manipulate reproduction of their arthropod hosts and require a modified
model of eco-epidemiological dynamics. Whether the phenomena observed in
this study would also appear in that model is currently unknown.
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A Proof of Theorem 1

With Φ(N) = λ, the expression (3) implies

N∗ =
−σ(1 − σ)(1 − ξ)β2 + β{µ + α+ σ[λ− µ + α(ξ − 2)]} − (µ+ α)(λ − α)

b[λ− α− β(1 − σ)]
.

Its derivative with respect to σ is

dN∗

dσ
=

β

b[λ− α− β(1− σ)]2
h(σ)

with

h(σ) := (1− ξ)β2σ2 + 2β(1 − ξ)(λ− α− β)σ + (λ − α− β)[λ− (1 − ξ)(α + β)].

This function has two roots (which are the critical values of dN∗

dσ
):

σ̂ =
(α + β − λ)(1 − ξ)−

√

ξλ(1− ξ)(α+ β − λ)

β(1 − ξ)
and

σ̄ =
(α+ β − λ)(1 − ξ) +

√

ξλ(1− ξ)(α + β − λ)

β(1 − ξ)
.

If these roots are complex, i.e if λ > α + β, then h(σ) > 0 on its entire domain and N∗

is increasing with σ. In what follows we assume that σ̂ and σ̄ are real, that is, λ < α + β.
Combined with the endemicity condition R0 > 1 this becomes

α+ β > λ > α+ β[1− (1− ξ)σ]. (16)

Notice also that R0 > 1 provides the following lower bound for σ:

σ > σR :=
α+ β − λ

β(1 − ξ)
.

From (16) it follows that

h′(0) = 2β(1 − ξ)(λ− α− β) < 0 and

h′(1) = 2β(1 − ξ)(λ− α) > 0.
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Furthermore, h′(σR) = 2βξ(α + β − λ) > 0 which implies σ̂ < σR. This means that σ̂ is
always outside the endemic range of σ.

We now analyze the position of the real roots σ̂ and σ̄ relative to their feasible interval
(0, 1). This can be done by analyzing the signs of

h(0) = (λ − α− β)[λ− (1 − ξ)(α + β)] and

h(1) = (1− ξ)[α2 + λ(β − α)] + λ(λ− α− β).

First notice that α2+λ(β−α) > 0. This follows from the fact that either β > α or, otherwise,

λ < α+ β <
α2

α− β
.

We have the following cases:

1. h(0) > 0 and h(1) < 0. This is equivalent to

max

{

λ

α+ β
,
α+ β − λ

βσ

}

< 1− ξ <
λ(α+ β − λ)

α2 + λ(β − α)
.

In this case σ̄ > 1 and N∗ increases on the interval (0, σ̂) and decreases on the interval
(σ̂, 1). Intersecting this with the endemic condition it follows that the relevant interval
of σ is (σR, 1) and N∗ is decreasing with increasing σ in this case.

2. h(0) < 0 and h(1) > 0. This is equivalent to

max

{

λ(α + β − λ)

α2 + λ(β − α)
,
α+ β − λ

βσ

}

< 1− ξ <
λ

α+ β
.

In this case σ̂ < 0 and N∗ is decreasing on the interval (0, σ̄) and increasing on (σ̄, 1).
To compare now σ̄ with σR we first compute

h′(σ̄) = 2β
√

ξλ(1− ξ)(α + β − λ)

and see that h′(σ̄) > h′(σR) because this is equivalent to

1− ξ >
α+ β − λ

α+ β

which follows from the fact that

1− ξ >
α+ β − λ

βσ
.

This proves that σR < σ̄ and N∗ is decreasing with σ on (σR, σ̄) and increasing on
(σ̄, 1).

3. h(0) > 0 and h(1) > 0 equivalent to

1− ξ > max

{

λ

α+ β
,
λ(α + β − λ)

α2 + λ(β − α)
,
α+ β − λ

βσ

}

.

In this case 0 < σ̂ < σ̄ < 1 and N∗ is decreasing on (σ̂, σ̄) and increasing otherwise. For
the same reasons as in the previous case, σR < σ̄ and N∗ is decreasing with increasing
σ on (σR, σ̄) and increasing on (σ̄, 1).

4. h(0) < 0 and h(1) < 0 equivalent to

α+ β − λ

βσ
< 1− ξ < min

{

λ

α+ β
,
λ(α + β − λ)

α2 + λ(β − α)

}

.

In this case σ̂ < 0 and σ̄ > 1 which means that N∗ is decreasing on (0, 1) irrespective
of ξ. In this last case it is easy to see that σR < 1 and N∗ is decreasing with increasing
σ on (σR, 1).
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B Proof of Theorem 2

Since G(0) = β̂ξσ2 > 0 we have several cases:

1. G(1) < 0 which is equivalent to the condition (7). This means there is a unique equilib-
rium x∗ ∈ (0, 1). Since G(x) > 0 for x < x∗ and G(x) < 0 for x > x∗ it is also globally
stable. Since x(t) → x∗ it follows that the equation of N is asymptotically autonomous
and the limiting system is a logistic equation

N ′ = N{[β̂σ(2 − σ)(1 − ξ) + λ̂]x∗ + β̂(1− ξ)σ2 − α− µ̄} (17)

where we have used the equality

β̂(1− σ)2(x∗)2 = [β̂σ2(1 + ξ)− 2σβ̂ξ + λ̂− α]x− β̂ξσ2.

Therefore, N approaches 0 or N∗ with

N∗ =
[β̂σ(2 − σ)(1 − ξ) + λ̂]x∗ + β̂(1 − ξ)σ2 − α− µ

b

depending on whether [β̂σ(2− σ)(1− ξ) + λ̂]x∗ + β̂(1− ξ)σ2 − α− µ is positive or not.
Specifically, N → 0 if and only if

x∗ <
−β̂(1− ξ)σ2 + α+ µ

β̂σ(2 − σ)(1 − ξ) + λ̂
.

2. G(1) > 0 and G(x) has no roots in (0, 1). In this case x∗ = 1 which corresponds to the
globally stable disease-free equilibrium.

3. G(1) > 0 and G(x) has two roots in (0, 1), denoted by x1 and x2, with x1 < x2. This
case is possible if

G′(0) < 0, G′(1) > 0 and G(xmin) < 0

where xmin is the x-coordinate of the vertex of the parabola G(x):

xmin =
β̂(1 + ξ)σ2 − 2β̂σξ + λ̂− α

2β̂(1 − σ)2
.

Whenever this case is possible we have that x1 and 1 are the locally stable proportions.
Hence we have bistability between the DFE and the endemic state or between DFE and
the extinction equilibrium, depending on whether [β̂σ(2−σ)(1−ξ)+ λ̂]x1+ β̂(1−ξ)σ2−
α− µ is positive or not.

We now study the monotonicity of a possible endemic state with respect to σ, the
sterilization efficiency. Solving the equation G(x) = 0 for x1 we have

x1 =
1

2β̂(1− σ)2
[λ̂− α− 2β̂σξ + β̂(1 + ξ)σ2 −

√
∆]

with ∆ being the discriminant of G(x). Let us analyze again the two extreme cases: full
vertical transmission (ξ = 0) and no vertical transmission (ξ = 1). If ξ = 0 then x1 = 0 and

N∗ =
β̂σ2 − α− µ

b

which is clearly increasing in σ.
If ξ = 1 first notice that (7) is equivalent to

λ̂ > α+ β̂

and x1 becomes

x1 =
λ̂− α− 2β̂σ(1 − σ) −

√
∆

2β̂(1− σ)2
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with ∆ = (λ̂−α)[λ̂−α− 4β̂σ(1− σ)]. The total population size at the endemic equilibrium
becomes

N∗ =
λ̂(λ̂− α)− 2β̂(1 − σ)[µ + α+ σ(λ̂ − µ− α)] − λ̂

√
∆

2bβ̂(1 − σ)2
.

Its derivative with respect to σ is

dN∗

dσ
=

λ̂

bβ̂(1 − σ)3
√
∆

[A
√
∆−B]

where we have denoted

A := λ̂− α− β̂(1 − σ) and B := (λ̂− α)[λ̂− α+ β̂(2σ2 − σ − 1)].

Notice that (7) impliesA > 0 and the above derivative is positive ifB < 0 or if A2∆−B2 > 0.
This last inequality is equivalent to

4(λ̂ − α)σβ̂2(1− σ)3(λ̂ − α− β̂) > 0

which is true if (7) holds.
It remains now to analyze the bistability case when both x1 and 1 are locally stable.

This model was fully analyzed in Berec and Maxin (2013) and this case corresponds to the
following conditions on the parameters:

4β̂σ(1 − σ) < λ̂− α < β̂ and σ <
1

2
.

We will show that dN∗

dσ
is positive in this case as well. First notice that

λ̂− α+ β̂(2σ2 − σ − 1) < 0.

Otherwise, it would imply
β̂ > λ̂− α > β̂(1 + σ − 2σ2)

which in turns implies 1− 2σ < 0, contradicting the conditions of the bistability case. Then

the positivity of derivative dN∗

dσ
is equivalent to B2 − A2∆ > 0, that is,

4(λ̂ − α)σβ̂2(1− σ)3(λ̂ − α− β̂) < 0

which is true since λ̂− α− β̂ < 0 and λ̂− α > 0.

We proceed now to show that dN∗

dσ
is positive for any intermediate value of vertical

transmission ξ. We managed to show this only under additional simplifying assumptions:
no disease induced mortality α = 0 and λ̂ = β̂. First notice that

N∗ =
β̂[x1 + σ(1 − x1)]2 − µ

b
,

so it is more convenient to analyze the monotonicity of the function

C(σ) := x1 + σ(1 − x1).

The derivative of this function is

dC

dσ
=

P
√
∆−Q

(1− σ)2
√
∆

with
P = (1− ξ)(σ2 − 2σ + 2) + 1,

Q = [1 + (1− ξ)σ(2 − σ)][(1 − ξ)σ2 − 2ξ(1 − σ) + 1].
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Since P > 0 then the derivative dC
dσ

is positive if either Q < 0 or if P 2∆ − Q2 > 0. After
some computation,

P 2∆−Q2 = 8(1− ξ)(1− σ)2g(ξ)

with
g(ξ) := (σ4 + 2σ2 − 2σ3)ξ2 + (−2σ2 + 2σ3 − 2σ − 2σ4)ξ + (1 + σ2)2.

Notice that σ4 + 2σ2 − 2σ3 > 0 and the discriminant of g(ξ) is

−4σ2(1 − σ)4 < 0

which means g(ξ) > 0 and this concludes the proof that dN∗

dσ
> 0.

C Proof of Theorem 3

We first prove a technical lemma that will be used in analyzing the stability of the DFE
and SEE of model (13):

Lemma 1 Let k > 0 and E defined as

E = km′(x∗)− µ− 2bx∗

where x∗ is a positive root of

k
m(x)

x
= µ+ bx.

Then there is at most one positive x∗ such that E < 0 if m(x) corresponds to the mating

function with the mate-finding Allee effect.

Proof Suppose m(x) = x2

c+2x
. In this case x∗ is a root of

a(x) = 2bx2 + (2µ + bc− k)x+ µc = 0.

This quadratic can have either two positive or two negative real roots. The necessary and
sufficient condition for existence of two real positive roots is

k − 2µ− bc >
√

8bµc.

Replacing k with (µ+bx∗)(c+2x∗)
x∗

we have that E < 0 if and only if

x∗ >

√

µc

2b
.

On the other hand,

a

(√

µc

2b

)

= 2µc+ (2µ + bc− k)

√

µc

2b
< 0

whenever the existence condition of a positive x∗ is satisfied. This shows that
√

µc
2b

lies

between the two positive roots of m(x). Hence E < 0 is satisfied for only one positive root
whenever such root exists.

We now provide the main results concerning the stability of the equilibrium points:

1. The endemic equilibrium is unstable whenever it exists.
Note that x∗ < 1 if and only if

λ̄ < β(1− 2σ) and σ <
1

2
.

On the other hand, one eigenvalue of the Jacobian of (13) evaluated at (x∗, N∗) is

m(N∗)

β(1− σ)2N∗
[λ̄+ βσ2][β(1− 2σ) − λ̄]

which is positive.
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2. There is at most one susceptible extinction equilibrium which is locally stable.
Evaluating the Jacobian at the SEE we obtain the following eigenvalues:

ê1 = −m(N̂)

N̂
[λ̄+ βσ2] < 0,

ê2 = βσ2m′(N̂)− µ− 2bN̂ .

From Lemma 1 with k = βσ2 we conclude that whenever an SEE exists there is only
one for which e2 < 0 and thus stable.

3. If the system has an endemic equilibrium then the DFE is locally stable whenever it
exists.
The Jacobian evaluated at (1, N̄) has two eigenvalues

ē1 =
m(N̄)

N̄
[λ̄− β(1 − 2σ)],

ē2 = βm′(N̄)− µ− 2bN̄ .

From the previous result ē1 < 0 whenever x∗ exists. Also, from Lemma 1 with k = β it
follows that e2 < 0 whenever the DFE exists.

From these results, we see that the SEE is the only outcome for α = 0 and ξ = 0 for
which one can achieve some level of control effectiveness (i.e. a disease-induced reduction of
the host population size). Moreover, the population level at the SEE is always an increasing
function in σ:

dN̂

dσ
= − 2βσm(N̂)

βσ2m′(N̂)− µ− 2bN̂

which is positive whenever the SEE is stable.

D Proof of Theorem 4

If we subtract the right-hand sides of the two equations in (15) we obtain

−M(1, 1)(x − y)

[

β

2
((1 − σm)y + σm)((1 − σf )x+ σf ) + λ

]

= 0.

Hence, at any equilibrium (x∗, y∗), we have x∗ = y∗ and x∗ is a solution of

(1 − x){β(1 − σf )(1 − σm)x2 − [βσfσm + 2λ+ βξ(σfσm − σf − σm)]x+ βξσfσm} = 0.

Obviously, the equilibrium x∗ = y∗ = 1 corresponds to the disease-free equilibrium. The
endemic equilibrium is a root of the function

f(x) := β(1 − σf )(1 − σm)x2 − [βσfσm + 2λ+ βξ(σfσm − σf − σm)]x+ βξσfσm.

Notice that f(0) > 0 and the product of the two roots of f(x) is positive as well. So, the
real roots, whenever they exists, are either both positive or both negative. Any feasible
equilibrium must also belong to the interval (0, 1). Hence, we distinguish two cases:

1. f(1) < 0 which is equivalent to

2λ

β
> 1− (1 − ξ)(σf + σm).

This case implies the existence of a unique steady state which is x1.
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2. f(1) > 0, f ′(1) > 0, f ′(0) < 0 and ∆ > 0. This case implies the existence of two steady
states (x1 and x2) in the feasible region.
The first three conditions above are equivalent to

2λ

β
< 1− (σf + σm) + ξ(σf + σm),

2λ

β
< 2− 2(σf + σm) + σfσm + ξ(σf + σm − σfσm),

2λ

β
> ξ(σf + σm − σfσm)− σfσm.

The last inequality above allows us to write the condition ∆ > 0 in a similar way as a
threshold for λ and β:

2λ

β
> [ξ(σf + σm − σfσm)− σfσm] + 2

√

ξσfσm(1− σf )(1 − σm).

Combining these inequalities we obtain

C(ξ) <
2λ

β
< min{A(ξ), B(ξ)}.

A straightforward computation also shows that the left threshold of 2λ
β

is always smaller

than the right threshold. Thus, the above interval always exists.

We analyze now the stability of the equilibria. We denote by J(x, y) the Jacobian of the
model (15). At the DFE (1, 1), we have

Trace(J(1, 1)) = −β

2
M(1, 1)[2− (1− ξ)(σf + σm)] < 0,

det J(1, 1) = −β + 2λ

4
M2(1, 1)[2λ− β(1− (1− ξ)(σf + σm))] > 0

if and only if
2λ

β
< 1− (1 − ξ)(σf + σm).

To analyze the stability of an endemic steady state (x∗, x∗) we first substitute β from
f(x∗) = 0 with

β =
2λx∗

(1− σf )(1 − σm)(x∗)2 + [ξ(σf + σm − σfσm)− σfσm]x∗ + ξσfσm

.

With this substitution we see that the trace of J(x∗, x∗) is always negative, i.e.

Trace(J(x∗, x∗)) =

= −λM(1, 1){2(1 − σf )(1 − σm)(x∗)3 + [σf (1− σm) + σm(1− σf )]x
∗(ξ + x∗) + 2ξσfσm}

(1− σf )(1− σm)(x∗)2 + [ξ(σf + σm − σfσm)− σfσm]x∗ + ξσfσm
< 0.

The determinant is

det J(x∗, x∗) = −(1− x∗)λ2M2(1, 1)
T1[(1− σf )(1 − σm)(x∗)2 − ξσfσm]

T2

with

T1 = (1 − σf )(1− σm)(x∗)3 + (1− σfσm)(x∗)2 + ξ(σf + σm − σfσm)x∗ + ξσfσm > 0,

T2 = {(1 − σf )(1 − σm)(x∗)2 + [ξ(σf + σm − σfσm)− σfσm]x∗ + ξσfσm}2 > 0.
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This implies that (x∗, x∗) is stable whenever

x∗ <

√

ξσfσm

(1 − σf )(1− σm)
.

On the other hand

f

(√

ξσfσm

(1 − σf )(1 − σm)

)

= −2λ

[(1− σf )(1 − σm)(x∗)2 + ξσfσm]

√

ξσfσm

(1−σf )(1−σm)
− 2ξσfσmx∗

(1− σf )(1− σm)(x∗)2 + [ξ(σf + σm − σfσm)− σfσm]x∗ + ξσfσm

.

The numerator of this expression is positive since it is equivalent to

ξσfσm[(1− σf )(1 − σm)(x∗)2 − ξσfσm]2

(1− σf )(1 − σm)
> 0.

This shows that

f

(√

ξσfσm

(1 − σf )(1 − σm)

)

< 0

which means that, if there is only one endemic steady state, it is stable and, if there are two
endemic steady states, the smaller one is stable and the larger one is unstable.


