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a b s t r a c t

We study several epidemic models (with and without gender structure) that incorporate risk
compensation behavior in response to a lower chance of acquiring the infection as a result of preventive
measures that are only partially effective. We show that the cumulative risk compensation that occurs
between a high risk susceptible and infectious individual may play an important role in whether the
implementation of these measures is successful in lowering the epidemic reproductive number. In
addition, we show that certain levels of risk compensationmay cancel the benefit of the low infection risk
practiced by diagnosed infectious individuals when the goal is a reduction of the epidemic reproductive
number.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Risk compensation represents the behavioral adjustments that
individuals undertake in response to the perceived levels of risk:
people become more careful if the level of risk is high and less
careful if it is low. In the context of epidemiology, risk compen-
sation translates to whether individuals take precautionary mea-
sures to avoid infection. Depending on the nature of the disease,
thesemeasures can include: washing hands, avoiding crowds, pro-
phylactic treatments, using condoms in the case of sexually trans-
mitted infections, etc. Risk compensation in response to low risk
levels may not constitute a major problem if the risk is indeed low
or insignificant. On the other hand, theremight be amajor discrep-
ancy between the perceived and the real level of risk. For example,
a vaccine that offers partial (but not total) protection might have a
much lower protective effect than what people believe. New and
effective treatments may also constitute additional factors for in-
creasing the risk behavior.

Most of the existing studies on risk compensation focus on
how sensitive the epidemic is with respect to behavioral changes
(see Poletti et al., 2009, Poletti et al., 2012). Many disease
specific articles on risk behavior are done in the context of
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HIV pandemic. Specifically, some researchers have documented
associations between improvements in HIV treatment outcomes
and greater sexual risk taking; i.e. more cases of condomless
sex and/or increased number of sex partners in response to
information that HIV treatments have improved (see Chen, 2013,
Crepaz et al., 2004, Ostrow et al., 2002, Stolte et al., 2004, Ostrow
et al., 2000). While no vaccine in the classical sense exists for
HIV, recent research focused on measures that act as partially
effective preventive measures. One of them is ‘‘Treatment as
Prevention’’ or ‘‘TasP’’ which refers to HIV prevention by using
certain antiretroviral drug regimens (ART). This reduces the risk of
acquiring the infection.

Other preventive measures may be gender specific. One
example is given by the Human Papillomavirus (HPV) vaccine
which was originally available for girls and young women (though
now it is recommended for both genders). Another gender
specific example is given by male circumcision (MC) which is
thought to offer significant protection against woman-to-man HIV
transmission. While these measures are advertised, the issue of
risk compensation has been recognized as a potential danger in the
fight against infectious diseases (in the case of HIV see Cassell et al.,
2006, Blower and McLean, 1994).

One additional aspect related to risk behavior (which is the
main motivation for our paper) is the potential of compounding of
risk compensationwhen the contact happens between a susceptible
and an infected personwho is not aware of his/her infection status.
This delay between the moment of infection and the realization
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that one is infected is caused by multiple disease specific factors.
In the case of HIV infection, it is common for individuals to go years
without diagnosis even if they are experiencing symptoms caused
by HIV infection. The reasons for this outcome are attributable
to the fact that symptoms of HIV infection (at least in the initial
years of infection) can be easily attributed to flu/cold related
infections (and, therefore, do not cause alarm), and/or the stigma
associatedwith testingHIVpositive deters individuals fromgetting
HIV tested and providers from asking about risk taking related to
HIV transmission which delays testing/treatment even if alarming
symptoms are present. Therefore it is likely that the increased risk
behavior due to preventive measures remains more or less the
same during this period between infection and diagnosis. Finally,
when individuals are diagnosed with HIV, a reduction in their
sexual risk taking is reported: individuals diagnosed with HIV
report fewer acts of condomless sex than individuals who are HIV
infected/unaware (see Eaton and Kalichman, 2009, Marks et al.,
2005).

This aspect is crucial for HIV where this delay is measured
in years. Once an infected person is diagnosed, the risk behavior
should decrease dramatically, to a level below normal risk, since,
presumably, the person will lower his/her risk behavior in order
to protect others from infection (such as strict adherence with safe
sex practices in the case of HIV). Low risk behavior of diagnosed
individuals remains a crucial weapon against any epidemic which
is the reason why individuals are encouraged both to undergo
disease testing and, if results are positive, to safeguard others
against transmission risk.

Although it is not obvious howone canmeasure the compound-
ing of risk behavior, a study that suggests how two high risk indi-
vidualsmay collude and accumulate their risk can be inferred from
an economic model about the market for unprotected commercial
sex (Gertler et al., 2005). Using the notations in this paper, the bar-
gainingmodel proposed therein, assumes that there is amaximum
amount a client is willing to pay (β) and a minimum amount a sex
worker will accept (γ ) in exchange for the riskier condom-less sex.
It follows that the condom will not be used if β > γ . While this
model does not categorize individuals by risk-taking levels, one can
assume that, in real life, these monetary thresholds are not fixed
and they are subject to change on the spot depending on how ne-
gotiation unfolds. In other words, there should be a lower proba-
bility of not using a condom if β is only slightly larger than γ and a
much higher one if β ≫ γ . The latter essentially indicates an en-
counter between two high risk individuals (a client willing to pay
a lot and a sex-worker willing to accept very little).

In our article we investigate the effect of risk compensation
in response to the presence of a partially effective preventive
measure for a disease without recovery. We analyze how this
affects the implementation of this measure if the infectious
class is split into diagnosed and un-diagnosed individuals. If risk
compensation is present, we assume that its effect is even more
pronounced if a higher risk susceptible comes in contact with
a higher risk infectious individual who is not aware of his/her
infectious status (i.e. un-diagnosed). The focus of our assessment
is on how the epidemic reproductive number changes once the
prevention is implemented and the risk compensation is taken into
account.

The epidemic reproductive number (traditionally denoted by
R0) usually represents the secondary number of infections caused
by an infectious individual in a healthy population. It is also re-
lated to the stability condition of the disease free equilibrium: if
R0 < 1 the disease free state is locally stable and the disease may
clear while, if R0 > 1, then the epidemic will persist. Therefore,
a measure of success of any intervention is whether R0 decreases
with such intervention. This is true even if the reduction is not be-
low the 1 threshold since a lowerR0 suggests fewer new infections
per unit of time. Our results are two-fold:
• We show that the compounding effect of risk compensation
increases the chance of reverting the protective effect of
prevention.

• More interestingly, the expected and promoted low risk be-
havior of diagnosed individuals may have the effect of under-
mining the positive outcome of introducing a partially effective
prevention measure: low infection rates from diagnosed indi-
viduals may cause the epidemic reproductive number to ac-
tually increase if prevention is introduced. This correlation is
primarily due to the demographic interplay between the high
risk groups.

In order to confer some disease generality, we show these results
using two models: with and without gender structure. Another
motivation for showing our result in these two frameworks
is due to the possibility that a partially effective prevention
measure may be available for one gender only. In the next section
we introduce the one-sex model and compute the epidemic
reproductive number with and without prevention. We analyze
underwhat conditions the reproductive number actually increases
with the level of prevention and show that this may happen if the
risk behavior of the diagnosed individuals is too low. In Section 3
we show that a similar situation happens in a two-sex model
in which the prevention measure is available for males only (to
resemble a potential benefit from MC as a working example).
We show that the cumulative risk compensation effect happens
indirectly, between two males that pass the infection to one-
another, via infecting a susceptible female. We retrieve the same
upper bound on the reduction of infection risk parameter onmales
as a condition for worsening the epidemic in the presence of
prevention (similar to the one found in the one-sex model). In
the last section we provide our interpretation of these results and
thoughts on expanding this research further.

2. The one-sex model

The model below describes a generic disease without recovery
for which a partially effective preventive measure is available. The
susceptible class without protection is denoted by S1 and their
infected counterparts by I1. We also assume that individuals, in
response to the knowledge of this protection, exhibit a certain
degree of risk compensation described by a constant parameter
ϵ > 1. S1 denotes the susceptible population without preventive
measures and S2 are the susceptible individuals that benefit
from prevention. I1 and I2 denote their infected counterparts
before diagnosing is made. Furthermore, we assume that this risk
compensation is stronger whenever the contact happens between
two protected individuals: a susceptible and an infected un-
diagnosed one. In addition to distinguishing between protected
and non-protected individuals, we also assume that, initially, all
infectious individuals are not-diagnosed. This means that, for a
certain amount of time after infection, the risk-behavior is identical
to that of the susceptible individuals and only upon learning of
the infectious status (i.e. diagnosis) individualswill lower their risk
behavior to avoid spreading of the disease. Diagnosed individuals
are denoted by J . The resulting five equationsmodel is given below
together with its flow diagram. The description of the parameters
is provided in Table 1.

S ′

1 = βP − λ
S1
P

(I1 + ϵI2 + ηJ) − µ̄S1 − δS1,

S ′

2 = δS1 − λξϵ
S2
P

(I1 + ϵI2 + ηJ) − µ̄S2,

I ′1 = λ
S1
P

(I1 + ϵI2 + ηJ) − µ̄I1 − dI1 − αI1,

I ′2 = λξϵ
S2
P

(I1 + ϵI2 + ηJ) − µ̄I2 − dI2 − αI2,

J ′ = d(I1 + I2) − µ̄J − νJ,

(1)

where P = S1+S2+I1+I2+J is the total population size (see Fig. 1).
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Table 1
Variables and parameters of model (1).

Symbol Meaning

S1 Susceptible individuals without preventive measures and with normal risk behavior and infection susceptibility
S2 Susceptible individuals with preventive measures that have higher risk behavior and lower infection susceptibility
I1 Infectious individuals without preventive measures and not yet diagnosed
I2 Infectious individuals with preventive measures that are not yet diagnosed
J Diagnosed infectious individuals with low risk behavior

β The per capita birth rate
δ The rate at which prevention is implemented
µ̄ = µ + bP The logistic mortality rate
λ The infection rate
0 < ξ ≤ 1 The reduction factor of transmission for protected individuals
ϵ ≥ 1 The augmenting factor of transmission rate corresponding to risk compensation of protected individuals
0 < η ≤ 1 The reduction factor of the transmission rate corresponding to low risk behavior of diagnosed infectious individuals
d The rate at which infectious individuals are diagnosed
α The disease induced mortality rate of infectious individuals not yet diagnosed
ν The disease induced mortality of infectious diagnosed individuals.
Fig. 1. Flow diagram of the one-sex model. The transmission rates are denoted by
f1 :=

1
P (I1 + ϵI2 + ηJ) and f2 :=

1
P λξϵ(I1 + ϵI2 + ηJ).

The epidemic reproductive number of thismodel is given below
(see Appendix A for its derivation):

Rvd
0 := λ

(β + ν)(β + ξϵ2δ) + dη(β + ξϵδ)

(β + δ)(β + d + α)(β + ν)
.

In order to assess the effect of preventive measures in the
context of risk-compensation, we provide below the epidemic
reproductive number under several modified assumptions. First, if
there is no prevention then it becomes

Rd
0 := λ

β + ν + ηd
(β + d + α)(β + ν)

.

With prevention but without diagnosis is

Rv
0 := λ

β + ξϵ2δ

(β + δ)(β + α)
.

Finally, the reproductive number with neither prevention nor
diagnosis is

R0 :=
λ

β + α
.

Onemeasure of identifyingwhether risk-compensation renders
the prevention measures ineffective as an intervention measure
is to ask whether the epidemic reproductive number becomes
actually greater with prevention than without it.

Thus, we wish to know under what conditions we have

Rvd
0 > Rd

0.

This inequality is equivalent to

(β + ν)(ξϵ2
− 1) > ηd(1 − ξϵ).

Notice that, if ξϵ > 1, this inequality is trivially satisfied. This
is expected since the risk-taking behavior factor ϵ > 1 acts as a
cancellation effect of the protection represented by ξ . On the other
hand if the risk-compensation falls in a range given by

ξϵ2 > 1 > ξϵ, (2)

then Rvd
0 > Rd

0 is satisfied provided we have the following upper
bound on the diagnosis related terms:

ηd <
(β + ν)(ξϵ2

− 1)
1 − ξϵ

.

An upper bound on the diagnosing rate d is to be expected since,
under normal circumstances, diagnosed infectious individuals
have a much lower risk behavior in order to avoid spreading the
infection. On the other hand, the upper bound on the reduction
of transmission of diagnosed individuals is more interesting.
Assuming that all terms are fixed except η, this upper bound
essentially says that prevention fails to reduce the reproductive
number if transmission from the diagnosed individuals is too low.

Indeed, assuming that diagnosed individuals exhibit perfect
quarantine (i.e. η = 0) then the implementation of preventive
measures always fail to reduce the reproductive number if the risk-
compensation falls within the range given by (2).

The key reason for this situation is the cumulative effect of
risk-compensation driven by S2–I2 transmission. (2) describes a
situation in which the risk-compensation is not strong enough to
render ineffective the protection of normal risk contacts (i.e. ξϵ <
1) but strong enough to revert the protection for high-risk contacts
(ξϵ2 > 1). Hence, any possible epidemic is sustained primarily by
S2 and I2 contacts and the presence of J class acts not only as a lower
infectious class but also as a class that dilutes the number of high-
risk contacts.

This creates a situation inwhich the low risk behavior practiced
by diagnosed individuals facilitates an increase in the reproductive
number after the introduction of prevention. This is not possible
without partially effective protection and risk compensation as we
can see in the following situation:

Rd
0 < R0 if and only if η <

β + ν

β + α
.

If the mortality of the diagnosed and un-diagnosed is the same
(ν = α) then the above inequality is equivalent to η < 1. In
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general, if treatment is available, one can assume ν < α and then
the condition becomes:

η <
β + ν

β + α
< 1.

In all cases, as expected, a higher diagnosing rate paired with
a reduced infectivity of the diagnosed individuals will lower
the reproductive number. On the other hand, partially effective
prevention combined with risk compensation may increase the
reproductive number and, more importantly, this can happen
whenever the risk behavior of diagnosed individuals is too low. In
this sense, a low value of η becomes detrimental.

In order to get a better understanding of why this phenomenon
occurs, we provide below a different format for Rvd

0 that can be
interpreted biologically:

Rvd
0 =


β

β + δ


λ

β + d + α
+

d
β + d + α

λη

β + ν


+


δ

β + δ


λξϵ2

β + d + α
+

d
β + d + α

λξϵη

β + ν


.

For the purpose of this interpretation, we view β as the logistic
naturalmortalitywhen the infection is absent (since, at the disease
free state, β = µ + bP). 1

β+δ
is the average time spent by a

susceptible in the S1 class. Hence β

β+δ
represents the fraction of

susceptible that remain un-protected and δ
β+δ

is the protected
fraction that moves from S1 to S2. 1

β+δ+α
is the average time

spent by an infectious individual in either I1 and I2 classes while
1

β+ν
is the average time spent by a diagnosed individual in the J

class. Finally, d
β+d+α

represents the probability of diagnosing one
infectious individual of either type I1 or I2.

The first term of Rvd
0 describes the effect of an infectious

agent introduced in a completely susceptible population without
preventive measures while the second term has a similar meaning
for a susceptible population that benefits of preventive measures
in its entirety. Thus, the first term of Rvd

0 represents the number
of secondary cases of infections of type I1 caused either directly
or through transfer to the diagnosed class. Similarly, the second
part represents the number of secondary cases of infections of type
I2 caused, again, either directly or through transfer to J first. The
condition (2) that ensures a failure of prevention by an increase in
the reproductive number can be written as:

λξϵ2

β + d + α
+

d
β + d + α

λξϵη

β + ν

>
λ

β + d + α
+

d
β + d + α

λη

β + ν
.

In other words, this inequality, essentially says that the unwanted
effect of increasing Rvd

0 happens if I2 replacements created by
the very process of implementation of preventive measures in the
presence of risk-taking, exceeds the number of I1 replacements. If
we are in the case ξϵ2 > 1 > ξϵ, we observe that this is in fact
guaranteed if η = 0 or, in other words, if diagnosed individuals
avoid all contacts. However, since I2 cannot replace itself via a
transfer through J (since ξϵ < 1), the presence of diagnosed
individuals in the transmission process can dilute the effect of
direct I2 replacements and, ultimately, avoid an increase in the
reproductive number.

In this context, diagnosed individuals, by their mere presence
in the infection process, dilute the cumulative risk compensation
effect which explains the upper bound on η. We observe also
that the condition ξϵ2 > 1 > ξϵ is more likely to happen
whenever there is a discrepancy between the perceived and the
true effectiveness of protection (i.e. high values of ξ require
comparatively small risk compensation effects for this inequality
to be true). For example, if ξ = 0.75, which would correspond
to a prevention measure that is only 25% effective, then the risk
compensation needs to be between 1.15 < ϵ < 1.33.

It is difficult to establish whether a certain numerical value
of ϵ matches the real data on risk-taking. However, some
evidence exists from several studies on behavioral attitudes
toward infection risks. For example, in Chesney et al. (1997),
Chesney et al.measured the risk compensation effect during anHIV
vaccine trial in San Francisco and found an increase in unprotected
sex from a base-line percentage of 9%–13% after 6 months (which
is an increase of a factor of 1.4).

Below we provide several numerical examples to illustrate
the effect of risk compensation and low risk behavior on the
change in the epidemic reproductive number before and after
prevention is implemented. Using demographic data from USA in
2013 provided by the Center of Disease Control and Prevention
(CDC, http://www.cdc.gov/), we approximate the birth and the
death rates: β = 0.01244 and µ = 0.00822. From the same
source we approximate the HIV additional mortality rate as being
ν = 0.000025. For undiagnosed individuals we use the disease
mortality α = 0.08 computed as the reciprocal of the average
duration of the last two stages of HIV infection: latency (which
is typically 10 years) and AIDS (approximately 3 years). CDC
provides data for the new HIV infections in the form of total
incidence (50,000 per year in USA) from which we can estimate
λ = 0.0418. To estimate the diagnosing rate we use the CDC
data from 2013 which mentions that 47,352 HIV diagnoses have
been established. At the same time about 232,700 individuals are
infected but unaware of their HIV positive status (approximately
21% of the infected population as provided in Gardner et al.,
2011 and references therein). This gives us an estimated value of
d = 0.203. While MC is not universally advertised as a partially
effective vaccine, for the purpose of this example, we are going to
use again CDC data regardingmale circumcision in USA to estimate
δ = 0.0036 (here we assumed an even sex ratio at birth and the
prevalence of circumcision of 58.3%).

In Fig. 2 we plot the threshold corresponding to Rvd
0 = Rd

0
as an implicit curve in the (ϵ, η) region for three values of ξ
and using the parameters mentioned above. The region where
preventivemeasures lower the reproductive number is above each
curve. Notice that, in all cases, low enough values of the risk-taking
factor ϵ will ensure the outcome is positive while high enough
values of ϵ lead to a negative outcome regardless of the diagnosed
group risk level. The part that illustrates our results is observed for
intermediate values of ϵ right under each curve. In that range, for
any given value of ξ , the positive outcome appears only if η is high
enough.

For example, if ξ = 0.6 and ϵ = 1.5 the threshold level of
η is η∗

= 0.215. This means any value of η below this threshold
will lead to an increase in the reproductive number while any
value above it will decrease it. The epidemic may also change from
clearance to persistence or the other way around as seen in the
following samples:

η = 0.1, Rd
0 = 0.372, Rvd

0 = 0.378,

η = 0.375, Rd
0 = 1.006, Rvd

0 = 0.997.

Notice that in the first case, while the reproductive number
increases, the disease free state is still locally stable since both
values are less than 1. But this need not be the case. If λ is larger (all
other parameters being the same) then we can have an increase to
an endemic level:

λ = 0.088, η = 0.144, Rd
0 = 0.996, Rvd

0 = 1.004.

Remark 2.1. It is important to point out that the effect described
above only requires that an S2–I2 encounter comes with a higher

http://www.cdc.gov/
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Fig. 2. The level curve Rvd
0 = Rd

0 in the (ϵ, η) plane for three different levels
of preventive measures efficacy ξ . The region above and to the left of each curve
corresponds to the success of introduction of preventive measures (i.e. Rvd

0 < Rv
0 ).

risk-compensation effect than in the case of S1–I2 or S2–I1 contacts
but not necessarily of the multiplicative order (i.e. ϵ2 vs ϵ). In
other words ϵ2 can be replaced by a different variable assumed
greater than ϵ without significant differences in the analysis
above. On the other hand, in the next section, we show that this
multiplicative order of the cumulative risk compensation appears
naturally in the case of sexually transmitted diseases where only
one gender benefits from preventive measures and exhibits risk-
compensation.

3. The two-sex model

As wementioned in the Introduction, in the context of sexually
transmitted diseases (STD), prevention may be available only for
one gender only. Even if transmission is primarily through a
heterosexual route, a cumulative risk compensation effect is still
possible via a female intermediate: a susceptible female infectedby
a high risk male who later infects a high risk susceptible male. The
purpose of this section is to show that the phenomenon described
in the previous section appears in this framework as well. Below
we propose a two-sex epidemic model with a partially effective
protection available for males only:

S ′

f = βγf M(F ,M) − λM(F ,M)
Sf
F

Im + ϵImv + ηmJm
M

− µ̄f Sf ,

S ′

m = βγmM(F ,M) − λM(F ,M)
Sm
M

If + ηf Jf
F

− µ̄mSm − δSm,

S ′

mv = δSm − λξϵM(F ,M)
Smv

M
If + ηf Jf

F
− µ̄mSmv,

I ′f = λM(F ,M)
Sf
F

Im + ϵImv + ηmJm
M

− µ̄f If − αIf − df If ,

I ′m = λM(F ,M)
Sm
M

If + ηf Jf
F

− µ̄mIm − αIm − dmIm,

I ′mv = λξϵM(F ,M)
Smv

M
If + ηf Jf

F
− µ̄mImv − αImv − dmImv,

J ′f = df If − µ̄f Jf − νJf ,
J ′m = dm(Im + Imv) − µ̄mJm − νJm,

(3)

where F = Sf + If + Jf andM = Sm +Smv + Im + Imv+ Jm represent
the total female and male populations.
M(F ,M) stands for the pair-formation function which models
both the birth and the heterosexual transmission of the disease.
For details about its properties and typical examples see Iannelli
et al. (2005), Maxin and Sega (2013). The meaning of the other
parameters is given in Table 2.

The derivation of the epidemic reproductive number is
presented in Appendix B. Here we actually provide the square of
Rvd

0 in order to simplify the exposition when we discuss the case
in which the risk compensation has a detrimental effect on the
introduction of the preventive measures.
Rvd

0

2
:= (λT ∗)2F∗M∗

×
(µ∗

f + df ηf + ν)[(µ∗
m + ν)(µ∗

m + δξϵ2) + dmηm(µ∗
m + δξϵ)]

(µ∗
m + δ)(µ∗

f + ν)(µ∗
m + ν)(µ∗

f + α + df )(µ∗
m + α + dm)

,

where F∗ andM∗ are the female andmale equilibrium populations
in the absence of the disease, µ∗

f and µ∗
m are the respective

mortality rates when the population is at the disease free steady
state and T ∗ denotes M(F∗,M∗)

F∗M∗ . In the absence of prevention (δ = 0)
the epidemic reproductive number becomes
Rd

0

2
= (λT ∗)2F∗M∗

×
(µ∗

f + df ηf + ν)(µ∗
m + dmηm + ν)

(µ∗

f + ν)(µ∗
m + ν)(µ∗

f + α + df )(µ∗
m + α + dm)

.

After some computations we see that Rvd
0 > Rd

0 if and only if

(ξϵ2
− 1)(µ∗

m + ν) > dmηm(1 − ϵξ).

This is identical to the condition obtained in the one-sex model
except, here, it relates strictly to the parameters corresponding to
the male population. Just as in the one-sex case, whenever the risk
compensation term satisfies

ξϵ2 > 1 > ξϵ, (4)

the preventive measure has a detrimental effect and increases the
reproductive number provided the following holds:

dmηm <
(µ∗

m + ν)(ξϵ2
− 1)

1 − ξϵ
.

This, again, represents an upper bound on the reduction of infec-
tion risk corresponding to the diagnosed infected males. Notice
that, in this case, the behavior of the diagnosed infected females
does not play any role in the outcome of the introduction of pre-
ventive measures. This emphasizes the fact that the phenomenon
is due to a cumulative effect of high-risk indirect contacts (here
represented by un-diagnosed infected males via a female interme-
diate). The regions where Rvd

0 < Rv
0 are very similar for the val-

ues used in the previous section and they are not reproduced again
here.

Remark 3.1. We emphasize that, for both the one-sex and two-
sex models, Rvd

0 is an increasing function of η, ηf or ηm. The
undesired outcome we pointed out in this analysis refers only
when comparing the epidemic reproductive numbers before and
after implementing preventive measures.

4. Discussion

In this article we studied the effect of risk compensation
in an epidemic in which infectious individuals are separated
between those who are aware of their infection (diagnosed) and
those who do not know this information yet (un-diagnosed).
This difference can be significant in infectious diseases for which
symptoms appear much later or are milder in their manifestation
and easily ignored. HIV is a prime example in the case of STD’s.
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Table 2
Variables and parameters for model (3).

Symbol Meaning

Sf Susceptible females
Sm Susceptible males without preventive measures
Smv Susceptible males with preventive measures
If Infected females not diagnosed
Im Infected males without protection and not diagnosed
Imv Infected males with protection and not diagnosed
Jf Infected females diagnosed
Jm Infected males diagnosed

β The per couple birth rate
γf , γm with γf + γm = 1 The female and male probability at birth
δ The rate at which preventive measures are implemented for males
µ̄f = µf + bP and µ̄m = µm + bP The logistic female and male mortality rates
λ The infection rate
0 < ξ ≤ 1 The reduction factor of transmission for protected male individuals
ϵ ≥ 1 The risk compensation factor for protected male individuals
0 < ηf ≤ 1 and 0 < ηm < 1 The reduction factor of the transmission rate corresponding to diagnosed female and male infectious individuals
df and dm The rate at which infectious females and males are diagnosed
α The disease induced mortality rate of infectious individuals not diagnosed
ν The disease induced mortality of infectious diagnosed individuals
Thus the risk behavior of undiagnosed individuals is identical
to the corresponding susceptible ones. We showed that, if the
risk compensation manifests itself in response to a partially
effective preventive measure, the cumulative effect from a high
risk contact can play an important role: when preventivemeasures
are introduced, the epidemic reproductive number may increase if
the infection risk from diagnosed individuals is too low.

Nevertheless, this phenomenon should be interpreted carefully.
As mentioned in previous remarks, a low risk behavior does
reduce the epidemic reproductive number, all else being equal.
The question we focused on here is whether a reduction is
observed when we compare R0 before and after the introduction
of preventive measures. It is in this context in which a low risk
behavior may cause an increase in R0. In other words, a low η may
cause an increase of R0 between two relatively low values and a
high η may cause a decrease of R0 between two relatively high
values. Therefore, themainmessage is to still promote high rates of
testing and to encourage diagnosed individuals to avoid infecting
others, but to be aware that risk-compensationmay act against the
benefits derived from these positive behavior traits.

Furthermore, high rates of diagnostic are always beneficial
(since (2) is also an upper bound on d). So, if η is too low to avoid an
increase in R0 then a high enough dwill counteract the effect and
cause the desired reduction in the reproductive number after the
implementation of prevention. However, if diagnosed individuals
completely avoid infecting others (i.e. η = 0), then no practical
level of the diagnosing rate d can avoid the situation described in
this paper.

The promotion for regular testing and treatment of possible
infections has been and continues to be a hallmark in any effort
of disease prevention. In addition to the individual benefits (early
detection means better chances for successful treatment) there
is also a moral aspect that plays an important role: diagnosed
individuals are expected to take all measures possible in avoiding
the spread of the disease. We still believe that encouraging early
diagnosis should continue. On the other hand, our results show
that the danger of risk compensation goes beyond the direct
reduction in the effectiveness of prevention at an individual level.
Due to the population dynamics and the subgroups that drive
the epidemic, failing to improve the outcome through preventive
measures may be more likely to happen at low level of risk
behavior in the diagnosed group.

Our result also shows the importance of how and when a
certain vaccine or prophylactic measure is advertised. We suggest
that extra care should be exercised when the following factors
are likely: questionable effectiveness of preventive measures,
high likelihood of risk compensation and an already established
dependence on testing for disease prevention.

We believe the next step in this research is to expand the efforts
already done in measuring and quantifying risk compensation
in order to have a sense as to whether situations described in
this paper are likely. This remains a difficult process and relies
on sociological and psychological research among other things.
Even more important, from our perspective, is to measure the
discrepancy between perceived and real risk assessments since
this discrepancy causes even lower levels of risk compensation to
have undesired effects.
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Appendix A. Derivation of the reproductive number for the
one-sex model

We use the next generation matrix approach in van den
Driessche and Watmough (2002) to compute the epidemic
reproductive number. The disease free equilibrium (DFE) of the
model (1) is

S∗

1 =
β(β − µ)

b(β + δ)
, S∗

2 =
δ(β − µ)

b(β + δ)
,

I∗1 = 0, I∗2 = 0, J∗ = 0,

which is feasible provided that β > µ. The entrance and removal
rates into the infectious classes I1, I2 and J are

F =


λ
S1
P

(I1 + ϵI2 + ηJ)

λξϵ
S2
P

(I1 + ϵI2 + ηJ)
0

 ,

V =


µ̄I1 + dI1 + αI1
µ̄I2 + dI2 + αI2

−d(I1 + I2) + µ̄J + νJ.


.
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The Jacobians evaluated at DFE are

F =


λ
S∗

1

P∗
λϵ

S∗

1

P∗
λη

S∗

1

P∗

λξϵ
S∗

2

P∗
λξϵ2 S

∗

2

P∗
λξϵη

S∗

2

P∗

0 0 0

 ,

V =


β + d + α 0 0

0 β + d + α 0
−d −d β + ν


.

The epidemic reproductive number is the spectral radius of FV−1

which is

Rvd
0 = λ

(β + ν)(β + ξϵ2δ) + dη(β + ξϵδ)

(β + δ)(β + d + α)(β + ν)
.

Appendix B. The derivation of the reproductive number for the
two-sex model

In the absence of the disease we can reduce the original model
(3) to the following planar system in F := Sf and M = Sm + Smv:

F ′
= βγf M(F ,M) − µ̄f F ,

M ′
= βγmM(F ,M) − µ̄mM.

(B.1)

This model was fully analyzed in a more general form in Maxin
and Sega (2013) and we only provide here the main result which
relates to the existence and the stability condition of the disease
free equilibrium of (3). FromMaxin and Sega (2013), (B.1) admits a
unique positive interior steady state (F∗,M∗) that is globally stable
if and only if

M


βγf

µf
,
βγm

µm


> 1.

Assuming the condition above, the disease free equilibrium is

S∗

f := F∗, S∗

m =
µ∗

mM
∗

δ + µ∗
m

, S∗

mv =
δM∗

δ + µ∗
m

,

I∗f = 0, I∗m = 0, I∗mv = 0, J∗f = 0, J∗m = 0.

We now proceed to compute the epidemic reproductive
number using the next-generationmatrixmethod described in van
den Driessche and Watmough (2002). The entrance and removal
rates into the infectious classes are:

F =



λM(F ,M)
Sf
F

Im + ϵImv + ηmJm
M

λM(F ,M)
Sm
M

If + ηf Jf
F

λξϵM(F ,M)
Smv

M
If + ηf Jf

F
0
0


,

V =


µ̄f If + αIf + df If

µ̄mIm + αIm + dmIm
µ̄mImv + αImv + dmImv

−df If + µ̄f Jf + νJf
−dm(Im + Imv) + µ̄mJm + νJm.

 .

The Jacobians evaluated at DFE are

F =


0 λT ∗S∗

f λϵT ∗S∗

f 0 ληmT ∗S∗

f
λT ∗S∗

m 0 0 ληf T ∗S∗

m 0
λξϵT ∗S∗

mv 0 0 λξϵT ∗S∗

mv 0
0 0 0 0 0
0 0 0 0 0

 ,
V =


µ∗

f + α + df 0 0 0 0
0 µ∗

m + α + dm 0 0 0
0 0 µ∗

m + α + dm 0 0
−df 0 0 µ∗

f + ν 0
0 −dm −dm 0 µ∗

m + ν

 ,

where T ∗
:=

1
F∗M∗ M(F∗,M∗). The epidemic reproductive number

is the spectral radius of FV−1 which, in this case, is

Rvd
0 = λT ∗

×


F∗M∗

(µ∗

f + df ηf + ν)[(µ∗
m + ν)(µ∗

m + δξϵ2) + dmηm(µ∗
m + δξϵ)]

(µ∗
m + δ)(µ∗

f + ν)(µ∗
m + ν)(µ∗

f + α + df )(µ∗
m + α + dm)

.

Appendix C. The derivation of the reproductive number for a
one-sex model with constant recruitment and mortality rates

The model shown below is similar to (1). The state variables
and the parameters have the same meaning while K denotes
the constant recruitment rate in the population of susceptibles.
Furthermore, unlike (1), the mortality rates are constants.

S ′

1 = K − λS1(I1 + ϵI2 + ηJ) − µS1 − δS1,
S ′

2 = δS1 − λξϵS2(I1 + ϵI2 + ηJ) − µS2,
I ′1 = λS1(I1 + ϵI2 + ηJ) − µI1 − dI1 − αI1,
I ′2 = λξϵS2(I1 + ϵI2 + ηJ) − µI2 − dI2 − αI2,
J ′ = d(I1 + I2) − µJ − νJ,

(C.1)

where P = S1 + S2 + I1 + I2 + J is the total population size.
The disease free equilibrium is

S∗

1 :=
K

µ + δ
, S∗

2 :=
δK

µ(µ + δ)
, I∗1 = I∗2 = J∗ := 0.

Using the same next generationmatrix approach as in the previous
appendixes we obtain the following epidemic reproductive
number

Rvd
0 =

λK [(µ + ν)(µ + ξϵ2δ) + dη(µ + ξϵδ)]

µ(µ + δ)(µ + d + α)(µ + ν)
.

In the absence of preventive measures (δ = 0) this becomes

Rd
0 =

λK(µ + ν + dη)

µ(µ + ν)(µ + d + α)
.

After a straightforward computation we see that the same thresh-
olds are obtained whenever we verify under what conditions the
introduction of preventive measures increases the reproductive
number, i.e.

Rvd
0 > Rd

0 is equivalent to (ξϵ2
− 1)(µ + ν) > dη(1 − ξϵ).
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