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Abstract
We establish boundedness results for a model of mutualism with an arbitrary 
number of species which encompasses several classic two-species models, 
even when extended to their respective multidimensional versions. These 
conditions are obtained under fairly general assumptions on the mathematical 
form of the functions modelling the mutualistic interactions and are expressed 
in terms of reproductive ratios at high population densities introduced ad hoc. 
We then discuss particular cases in which there is a single threshold parameter 
separating boundedness from unboundedness. The situation in which the 
unboundedness is caused by a particular subset of species is also of concern.

Keywords: mutualistic interaction, boundedness, Metzler matrices, 
reproductive ratios
Mathematics Subject Classification numbers: Primary: 92D25, 92D40; 
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1. Introduction

Species within any ecosystem interact with each other in multiple, often complex, ways. Such 
interactions can be antagonistic, beneficial or even a combination of the two, as seen in some 
pollination–herbivory interactions in which the insect pollinates the plant but its larvae feed 
on the leaves of the same plant (Revilla and Encinas-Viso [26]).
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Due to the complexity of ecological processes, the importance of having better modeling 
tools is self-evident. In particular, mutualistic interactions, which lead to a net benefit for 
all species involved (Boucher et  al [5]), present unique challenges due to several factors, 
both biological and mathematical. As mentioned in Bronstein et al [6], there is evidence that 
species interactions fostered the diversification of lineages in the past. Of these interactions, 
mutually beneficial partnerships are often cited to account for the rise of particular traits to 
ecological dominance. An example of a possibly crucial role played by a mutualism is given 
by a lineage of several plant species that are pollinated exclusively by a particular insect line-
age. This suggest that herbivore–pollinator interaction was responsible for the diversification 
of both plants and insect pollinators. Nevertheless, as the authors of [6] acknowledge, it is 
quite difficult and rare to find empirical evidence of a particular mutualistic relationship, espe-
cially if it refers to an ancient one. This is where robust mathematical models can be used to 
validate or invalidate certain ecological hypotheses.

While most existing models of mutualism are bi-dimensional, ecosystems are seldom lim-
ited to groups of only two species interactions. Most plants, after all, are pollinated by more 
than one insect. Indeed, many existing studies on mutualistic interactions are confined to the 
two-species case (see, for instance, Addicott [1], Graves et al [10], May [20], Vargas–De–León 
[33], Wolin and Lawlor [36], Wright [37]), comparatively fewer being dedicated to the case 
of multispecies communities. This happens in spite of biological findings which demonstrate 
that mutualistic interactions between two species may be greatly affected by species external 
to the mutualism (Bacher and Friedli [2]), fact which may make the consideration of pairwise 
interactions without their environmental context somewhat misleading. Furthermore, multi-
species mutualisms appear sometimes in unexpected and quite important circumstances. One 
such example is provided by reef-builiding corals, which are associated with a diverse array 
of microbes. Among the best known of such microbes, found in all reef-building corrals, is 
a class of symbionts called zooxanthellar (see also Knowlton and Forest [15] and references 
therein). For a long time considered a single species, they are now recognized as several 
genetically diverse groups that live in a single colony thus forming a multi-species mutual-
ism interaction. As mentioned in [15], coral bleaching (the loss of zooxanthellae) and coral 
diseases, both increasing over the last decades, may be examples of mutualistic instability.

It is also worth considering that there are several possible shades of (and on) mutualisms 
(Bronstein et al [6]). For instance, in protection mutualisms, benefits are obtained only when 
natural enemies or detrimental conditions are present. If they are not, then the interactions 
between species may yield negative effects since mutualisms involve costs too. Also, some 
mutualisms are indirect, the positive effects being transmitted through a chain of intermediary 
species, whose interactions between themselves and with the mutualists may nullify in certain 
conditions the pairwise benefits. Symbiotic interactions may incur both benefits and costs and 
shift in a continuum between mutualism and parasitism, especially if one adopts the view that 
mutualistic interactions are essentially exploitative and one species exploits the other in order 
to gain a benefit (Neuhauser and Fargione [23]). Mutualistic interactions, particularly con-
sumer-resource obligate ones such as the interaction between leaf-cutter ants and their fungus 
garden discussed in Kang et al [14], may function at different trophic levels and consequently 
face a trade-off in allocation of efforts towards the maintenance of the resource and towards 
the production and care of offsprings. To fill this vacuum, a conceptual framework for defining 
ecological effects in plant-animal mutualisms has been proposed in Vázquez et al [35].

Lately, a network perspective has been introduced to the study of mutualistic communities 
(Bascompte et al [3], Jordano et al [13]), being observed that mutualistic networks are often 
of a heterogeneous nature. That is, while most of the participating species are only involved in 
a couple of interactions, a few ‘privileged’ species are much more connected than the others 
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(Jordano et al [13]), one of the causes being that longer-lived species often interact with differ-
ent short-lived partners at distinct stages of their lives (Palmer et al [24], Husband et al [11]).

All reasons outlined above justify the need of a framework for models of mutualism with an 
unspecified number of species. The focus of this paper is on defining a general class of models 
of mutualism in terms of consistency hypotheses introduced ad hoc and obtaining condi-
tions for the boundedness and unboundedness of solutions, respectively, in terms of threshold 
parameters which are similar in scope to the basic reproduction number from  mathematical 
epidemiology.

Our threshold parameters, however, are computed in very different conditions. That is, they 
are not computed in a near-extinction situation, as it is the case in mathematical epidemiology 
and, to a lesser extent, in ecology (Georgescu and Hsieh [9], Garrione and Rebelo [8]), but at 
high population densities, under given species proportionality. The reason is that, as far as the 
validity of the model is concerned, what is important is not the extinction of species, but their 
blow-up. Also, a model of mutualism has an entirely different structure, not exhibiting the 
asymmetry which is characteristic to disease propagation models and predator-prey models. 
A single threshold parameter, based on the dynamics of a single species or compartment, may 
consequently not be enough to describe the behavior of solutions for a model of mutualism, 
and we employ one reproductive ratio per species to introduce our boundedness conditions.

We also observe that for a representative class of models which includes n-dimensional ver-
sions of several two-dimensional (2D) models in common use, the boundedness condition can 
be expressed in terms of eigenvalues for a certain matrix of coefficients, which represents an 
useful algebraic test for boundedness. Establishing the boundedness of the solutions is one of 
the key steps in validating models of mutualism. In the case of two-species models, this is the 
first step toward proving the global stability of a co-existence equilibrium. For more than two 
species, an additional question which we address is whether only a privileged subset of them 
is responsible for causing an unbounded solution which, ultimately, makes the model invalid.

The paper is organised as follows. In section 2, we introduce the class of models which is 
of concern in this paper and state the assumptions which represent the abstract framework for 
its study. We then introduce our threshold parameters, called reproductive ratios, and obtain 
the boundedness and unboundedness conditions, respectively, in terms of those ratios. In sec-
tion 3, we observe that in a particular case the boundedness condition is equivalent to the 
Hurwitz stability of a certain matrix of coefficients. Section 4 is devoted to the applicability 
of our results to several concrete models, introduced ad hoc or as n-dimensional versions of 
2D models in current use. Section 5 is concerned with the case in which only a group of spe-
cies (not all) are the actual cause of unboundedness. This paper ends with a section in which 
we put our results into a larger perspective and indicate directions of further study and with 
an appendix which contains a few notions of matrix theory which are necessary to state and 
prove our results.

2. Main results

In proving our main result we use boundedness techniques similar to those employed in  
[18, 19].

Consider the mutualism system

x′i = xi[ai(xi)− fi(x1, x2, ..., xn)], 1 � i � n, (1)

in which the functions ai and fi, 1 � i � n, are assumed to be positive and continuous. First, 
we state several assumptions introduced ad hoc.

P Georgescu et alNonlinearity 30 (2017) 4410



4413

 (L) The logistic assumption. For all 1 � i � n, there exist Ki > 0 such that 
ai(Ki)− fi(0, .., 0, Ki, 0, ...0) = 0 and

(ai(xi)− fi(0, .., 0, xi, 0, ...0)) (xi − Ki) < 0 for xi �= Ki.

 (M) The mutualistic assumption. For all 1 � i � n, fi(x1, .., xn) is decreasing in xj for j �= i.
 (C1) Consistency assumption. For all 1 � i � n, fi(x1, ..., xn) is increasing in xi.

 (C2) Consistency assumption. For all 1 � i � n, ai(six)
fi(s1x,...,snx) is eventually decreasing for all 

si > 0, i.e.

d
dx

(
ai(six)

fi(s1x, ..., snx)

)
< 0 for x > Mi

  where Mi are positive real constants that may depend on s1, s2, . . . , sn.
Since the fi’s represent removal rates, assumption (M) represents the fact that the mutualistic 
support the species give to each other leads to a decrease in the death rates. Assumptions (C1) 
and (C2) essentially describe the effects of saturation. Also, assumption (C2) ensures that the 
following limits are defined:

Ri(s1, s2, ..., sn) := lim
x→∞

ai(six)
fi(s1x, s2x, ..., snx)

.

It is easy to see that the Ri’s are invariated by a scalar multiplication of all si’s, in the sense 
that

Ri(cs1, cs2, ..., csn) = Ri(s1, s2, ..., sn), for c > 0.

Consequently, si, 1 � i � n, are to be understood as characterizing relative population sizes 
and Ri(s1, s2, ..., sn) characterizes the ability of species i to reproduce at high population sizes 
under the given species proportionality. Under the stated form of (C2), x is to be understood as 
a common measuring unit of all populations and does not bear an immediate biological mean-
ing. It is true that (C2) can be stated (and later used) only for parameters si, 1 � i � n with 
sum 1, in which case x represents the total (of all species) population size and si represent the 
percentage held by the ith population. However, this approach has the disadvantage of lump-
ing all species (which may or may not have similar characteristics) into a total population size, 
although it should also be mentioned that if the xi’s represent adimensionalized quantities, 
then this approach may become reasonable enough.

Also, the Ri’s represent birth-to-death ratios, or, perhaps more aptly, growth-to-loss ratios, 
since ai and fi are only defined modulo functions of xi and consequently ai may or may not 
contain terms pertaining to the removal of species i. The Ri’s also measure the amount of 
mutualistic support each species receive from the others.

From the assumptions (M) and (L), we see that the solutions of (1) with initial data in 
(0,∞)× (0,∞)× . . .× (0,∞) are bounded from below by positive constants since

x′i > xi[ai(xi)− fi(0, ..., 0, xi, 0, ..., 0)] > 0, 1 � i � n,

for xi < Ki. Consequently, the following result holds.

Theorem 2.1. Assuming (M) and (L), the solutions of the system (1) with initial data in 
(0,∞)× (0,∞)× . . .× (0,∞) are bounded from below by positive constants that may de-
pend on the initial data.

Having noticed that Ri’s represent growth-to-loss ratios, it is natural to expect that if the 
losses exceed the growths at higher population sizes, for each population on their own, then 
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the population sizes cannot grow indefinitely, that is, remain bounded, although the bounded-
ness constants may depend on the initial population sizes. The following result quantifies this 
remark.

Theorem 2.2. Assuming (M) and (C2), if there are α1,α2, . . . αn > 0 such that

Ri(α1,α2, . . . ,αn) < 1, for all 1 � i � n,

then the solutions of (1) are bounded from above by positive constants that may depend on 
the initial data.

Proof. Let us define

h(t) = max

{
x1(t)
α1

,
x2(t)
α2

, . . . ,
xn(t)
αn

}
.

Suppose that, for a given t, one has that h(t) = xi(t)
αi

, for some 1 � i � n. Then

xj(t) �
αjxi(t)
αi

for j �= i.

Consequently,

x′i(t)
xi

� fi

(
α1xi

αi
,
α2xi

αi
, . . . , xi, . . . ,

αnxi

αi

)
 ai(xi)

fi
(

α1xi
αi

, α2xi
αi

, . . . , xi, . . . , αnxi
αi

) − 1


 .

Using the variable change xi = αiu, one sees that

lim
xi→∞

ai(xi)

fi
(

α1x
αi

, α2x
αi

, . . . , x, . . . , αnx
αi

) = lim
u→∞

ai(αiu)
fi(α1u,α2u, . . . ,αiu, . . . ,αnu)

= Ri(α1,α2, . . . ,αn).

It follows that x′i (t)
xi

< 0 for xi large enough. Consequently, denoting by D+h the upper Dini 

derivative of h (see, for instance, Lakshmikantham and Leela [16, page 7]), one may infer that 
D+h(t) < 0 when h(t) is large enough, and consequently h(t) is bounded from above. □ 

Since the system (1) is already known to be uniformly bounded from below by theorem 2.1, 
the boundedness of the solutions implies the existence of a positive equilibrium by theorem 
2.8.6 of Bhatia and Szegö [4] (see also Smith and Waltman [30], theorem D.3). Consequently, 
one obtains the following result.

Corollary 2.1. Assuming (L), (M), (C1) and (C2), if there are α1,α2, . . . αn > 0 such that

Ri(α1,α2, . . . ,αn) < 1, for all 1 � i � n,

then there is a positive equilibrium E∗ = (x∗1 , x∗2 , . . . , x∗n) of (1).

A converse (in some sense) result holds as well, under slightly stronger monotonicity 
hypotheses on the functions which appear in (C2).
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Theorem 2.3. Suppose that (C2) is replaced by

 (C2)′ For all 1 � i � n, ai(six)
fi(s1x,...,snx) is decreasing as a function of x for all s1, s2, . . . , sn > 0, 

i.e.

d
dx

(
ai(six)

fi(s1x, ..., snx)

)
< 0 for x > 0.

If there is a positive equilibrium E∗, then there exist α1,α2, . . . ,αn > 0 such that

Ri(α1,α2, . . . ,αn) < 1, for all 1 � i � n.

Proof. From the equilibrium relations, one sees using (C2)′ that

1 =
ai(x∗i )

fi(x∗1 , x∗2 , . . . , x∗n)
>

ai(x∗i x)
fi(x∗1 x, x∗2 x, . . . , x∗n x)

, for x > 1, 1 � i � n.

The conclusion follows passing to limit in the above inequality. □ 

If the opposite situation happens, that is, if the growths exceed the losses, then it is natural 
to expect that the population sizes grow unbounded.

Theorem 2.4. Assuming (M) and (C2), if there are α1,α2, . . . αn > 0 such that

Ri(α1,α2, . . . ,αn) > 1, 1 � i � n,

then the solutions of (1) are unbounded if the initial population sizes are high enough.

Proof. Since the solutions of (1) are bounded from below by a positive constant, we can as-
sume that there exist ξ > 0 such that xi(t) > ξ  for all 1 � i � n. Seeking for a contradiction, 
let us assume that the function

h(t) := min

{
x1(t)
α1

,
x2(t)
α2

, . . . ,
xn(t)
αn

}

is bounded from above, i.e. h(t) < M for a certain M > 0 and for every t � 0. Suppose that 

h(t) = xi(t)
αi

 for some fixed 1 � i � n. Then

xj(t) �
αjxi(t)
αi

for j �= i.

It then follows that

x′i(t)
xi

� fi

(
α1xi

αi
,
α2xi

αi
, . . . , xi, . . . ,

αnxi

αi

)
 ai(xi)

fi
(

α1xi
αi

, α2xi
αi

, . . . , xi, . . . , αnxi
αi

) − 1




〉 fi(α1M, ...,αi−1M, ξ,αi+1M, ...,αnM)


 ai(xi)

fi
(

α1xi
αi

, α2xi
αi

, . . . , xi, . . . , αnxi
αi

) − 1


 .
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Using the same change of variable as in the previous theorem and assuming that the initial 
condition satisfies xi(0) > Mi , passing to limit in the above expression one obtains

x′i
xi

> fi(α1M, ...,αi−1M, ξ,αi+1M, ...,αnM)[Ri(α1, ...,αn)− 1] > 0.

This shows that h′/h is bounded from below by a positive constant m, where

m := min
1�i�n

{ fi(α1M, ...,αi−1M, ξ,αi+1M, ...,αnM)[Ri(α1, ...,αn)− 1]}

and provided that

h(0) > max
1�i�n

{
Mi

αi

}
.

Using this lower bound and a consequence of the Lebesgue theorem ([29, corollary 4, page 
113]) we obtain

ln h(t)− ln h(0) �
∫ t

0

h′(τ)
h(τ)

dτ >

∫ t

0
mdτ = mt.

Letting t → ∞ in the above inequality it follows that h(t) → ∞, contradicting our assumption 
that h is bounded above. Hence h and, therefore, xi are also unbounded if the population sizes 
are high enough. □ 

3. Particular growth conditions

Let us suppose that the Ri’s are given in the following particular form.

Ri(s1, s2, . . . , sn) =
n∑

j=1,j�=i

Cij

(
sj

si

) p

, 1 � i � n, (2)

with

Cij � 0 for all 1 � i �= j � n.

Then the boundedness conditions

Ri(α1,α2, . . . ,αn) < 1, 1 � i � n,

reduce to
n∑

j=1,j�=i

Cijvj − vi < 0, 1 � i � n,

with vi = α p
i , 1 � i � n. This means that the vector v = (v1, v2, . . . , vn)

T verifies

Cv � 0,

where C is the Metzler matrix given by

P Georgescu et alNonlinearity 30 (2017) 4410
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C =




−1 C12 . . . C1n

C21 −1 . . . C2n

...
...

...

Cn1 Cn2 . . . −1


 . (3)

With the same notations, the unboundedness conditions reduce to

Cv � 0.

Using then lemmas A.1 and A.2, one obtains the following result.

Theorem 3.1. Suppose that the growth conditions (2) are satisfied. The following proper-
ties hold true, the matrix C being defined in (3).

 (a) All solutions of (1) are bounded if and only if C is Hurwitz stable.
 (b) If C is Hurwitz unstable and irreducible, then (1) has unbounded solutions.

Let us now suppose that the Ri’s are given in the exponential form.

Ri(s1, s2, . . . , sn) = Mi exp

(
− s p

i∑n
j=1,j �=i dijs

p
j

)
, 1 � i � n, (4)

with

Mi > 0, dij � 0 for all 1 � i �= j � n.

Via similar considerations, one then arrives at the following Metzler matrix of interest

D =




−1 d12 lnM1 . . . d1n lnM1

d21 lnM2 −1 . . . d2n lnM2

...
...

...

dn1 lnMn dn2 lnM2 . . . −1


 . (5)

which may replace C in the statement of theorem 3.1.

4. Particular cases

In this section we provide several particular cases of n-species mutualism where the bounding 
theorem from the previous section can be applied.

4.1. Mutualism as reduction of mortality for the benefiting species

Let us consider the model

x′i = rixi

[
Ai −

x p
i

Ki +
∑

j�=i bijx
p
j

]
, 1 � i � n, p > 0, (6)

introduced here as an immediate extension of the model considered in Wolin and Lawlor 
[36] and May [20], which can be obtained from (6) for n = 2 and p = 1. Here, ‘reduction of 
losses’ means that the mutualism acts towards a reduction of the negative term, although the 
derivation of the model in [36] assumes that it is the birth rate that is affected by the mutual-
istic interaction. Actually, this model is the one which motivated us to analyse the first set of 
particular growth conditions given in the previous section and generally lead us to the consid-
erations given in this paper. For this model, it is seen that
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ai(xi) = riAi, fi(x1, x2, . . . , xn) =
rix

p
i

Ki +
∑

j�=i bijx
p
j

and consequently

ai(six)
fi(s1x, s2x, . . . , snx)

= Ai


 Ki

(six) p +
∑
j�=i

bij

(
sj

si

) p

 .

It then follows that

Ri(s1, s2, . . . , sn) = Ai


∑

j�=i

bij

(
sj

si

) p

 ,

the corresponding matrix C being given by

C =




−1 A1b12 . . . A1b1n

A2b21 −1 . . . A2b2n

...

Anbn1 Anbn2 . . . −1


 .

For n = 2, the model (6) reduces to the following model:



x′1 = r1x1

(
A1 −

x p
1

K1+b12x p
2

)
,

x′2 = r2x2

(
A2 −

x p
2

K2+b21x p
1

)
.

 (7)

Since in this case C =

(
−1 A1b12

A2b21 −1

)
, its leading principal minors being

∆1 = −1, ∆2 = 1 − A1A2b12b21,

it follows that the solutions of (7) are bounded provided that A1A2b12b21 < 1. This condition 
ensures not only the boundedness of the solutions (and, as seen above, the existence of the 
positive equilibrium), but also the global stability of the positive equilibrium, via the use of the 
Dulac criterion (see, for instance, Martcheva [17, page 55]).

Let us now suppose that (6) has a ‘privileged’ species, the nth one, which interacts with 
all other, while species 1, 2, . . . , n − 1 interact with species n, but do not interact with each 
other (see Vargas–De–León [34] for a related model). An usual example is provided by plant– 
pollinators systems where the species interaction may form a bi-partite graph (i.e. insects 
interact with plants but not among themselves). The example below represents a subset of this 
network focused on one insect (the privileged species) that pollinates multiple plant species. 
In some cases plants do depend on only one single pollinator as is the case with certain orchid 
species that are exclusively pollinated by the male orchid bee (see also Ramirez [28] and refer-
ences therein). In this case, the model (6) reduces to




x′1 = r1x1

(
A1 −

x p
1

K1+b1nx p
n

)
,

x′2 = r2x2

(
A2 −

x p
2

K2+b2nx p
n

)
,

...

x′n = rnxn

(
An − x p

n
Kn+bn1x p

1 +...+bnn−1x p
n−1

)
 (8)
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and consequently

C =




−1 0 . . . 0 A1b1n

0 −1 . . . 0 A2b2n

...

0 0 . . . −1 An−1bn−1n

Anbn1 Anbn2 . . . Anbnn−1 −1




.

Since

detC = (−1)n−1[−1 + An(A1b1nbn1 + A2b2nbn2 + . . .+ An−1bn−1nbnn−1)],

the other leading minors of order p, 1 � p � n − 1, being equal to (−1) p, one finds that the 
bounding condition is in this case

An(A1b1nbn1 + A2b2nbn2 + . . .+ An−1bn−1nbnn−1) < 1.

A similar matrix results from another model where the threshold conditions involve loga-
rithms. The model is somewhat artificial, i.e. biologically feasible but not immediately related 
to any known species interaction. Its purpose, is to show that the bounding conditions do not 
restrict the Ri’s to the quasi-polynomial format given in (2).




x′1 = r1x1

[
m1 − K1

x1
1+x1

(
1 + 1

1+b1xn

)x1
]

,

x′2 = r2x2

[
m2 − K2

x2
1+x2

(
1 + 1

1+b2xn

)x2
]

,
...

x′n = rnxn

[
mn − Kn

xn
1+xn

(
1 + 1

1+c1x1+c2x2+···+cn−1xn−1

)xn
]

 (9)

with mi > Ki, 1 � i � n.
It follows that

Ri(s1, s2, . . . , sn) =
mi

Ki
exp

(
− si

bisn

)
, for 1 � i � n − 1, and

Rn(s1, s2, . . . , sn) =
mn

Kn
exp

(
− sn

c1s1 + c2s2 + . . .+ cn−1sn−1

)
.

The matrix D becomes

D =




−1 0 . . . 0 b1 ln
(

m1
K1

)

0 −1 . . . 0 b2 ln
(

m2
K2

)

...

0 0 . . . −1 bn−1 ln
(

mn−1
Kn−1

)

c1 ln
(

mn
Kn

)
c2 ln

(
mn
Kn

)
. . . cn−1 ln

(
mn−1
Kn−1

)
−1




.

Similar to the previous example, the bounding condition becomes
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ln

(
mn

Kn

)[
b1c1 ln

(
m1

K1

)
+ b2c2 ln

(
m2

K2

)
. . .+ bn−1cn−1 ln

(
mn−1

Kn−1

)]
< 1

or, in a more compact form,

ln

(
mn

Kn

)
ln

[(
m1

K1

)b1c1
(

m2

K2

)b2c2

. . .

(
mn−1

Kn−1

)bn−1cn−1
]
< 1.

4.2. Mutualism as a positive contribution to the fertiliy rate of the benefiting species

The following model with restricted growth rates

x′1 = r1x1

(
1 − x1

K1

)
+ c1x1(1 − e−α2x2)

x′2 = r2x2

(
1 − x2

K2

)
+ c2x2(1 − e−α1x1),

 
(10)

has been proposed by Graves et  al in [10]. From a qualitative viewpoint, the model (10), 
unlike the model (6), assumes that each species enhances the growth rate of the other without 
affecting its carrying capacity.

In what follows, we shall consider its multispecies version given by

x′i = rixi

(
1 − xi

Ki

)
+ cixi

(
1 − e−

∑
j�=i αijxj

)
, 1 � i � n. (11)

Let us first rearrange (11) in the form

x′i = xi

[
(ri + ci)−

(
rixi

Ki
+ cie−

∑
j�=i αijxj

)]
, 1 � i � n. (12)

For this model, it is seen that

ai(xi) = ri + ci, fi(x1, x2, . . . , xn) =
rixi

Ki
+ cie−

∑
j�=i αijxj

and consequently

ai(six)
fi(s1x, s2x, . . . , snx)

=
ri + ci

risi
Ki

x + cie−(
∑

j�=i αijsj)x
,

which is eventually decreasing. It then follows that

Ri(s1, s2, . . . , sn) = 0, 1 � i � n,

the corresponding matrix C being given by

C = −In,

which is Hurwitz stable. This ensures the boundedness of the solutions of (12) via theorem 
3.1.

The following model of mutualism incorporating handling of the mutualistic partner y

x′ = x
[

r(1 − cx) +
βy

α+ y

]
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has been proposed in Wright [37]. After some renotations, let us consider its multispecies 
version given by

x′i = rixi

(
1 − xi

Ki

)
+ xi

∑
j�=i

βijxj

αij + xj
, 1 � i � n. (13)

One may remark that this multispecies version is related to the models considered in Jelle 
Lever et al [12] and Rohr et al [27], the differences being that no competition terms are con-
sidered and there is no functional distinction between two categories of species (plants and 
pollinators in [12], plants and animals in [27]). Lastly, our model (13), unlike the model in 
[12], assumes that there is no immigration.

Let us first rearrange (13) in the form

x′i = xi


(ri +

∑
j�=i

βij)−


 rixi

Ki
+
∑
j �=i

βijαij

αij + xj




 , 1 � i � n. (14)

For this model, it is seen that

ai(xi) = ri +
∑
j�=i

βij, fi(x1, x2, . . . , xn) =
rixi

Ki
+
∑
j�=i

βijαij

αij + xj

and consequently

ai(six)
fi(s1x, s2x, . . . , snx)

=
ri +

∑
j�=i βij

risixi
Ki

+
∑

j �=i
βijαij

αij+sjxj

,

which is eventually decreasing. It then follows that

Ri(s1, s2, . . . , sn) = 0, 1 � i � n,

the corresponding matrix C being given by

C = −In,

which is Hurwitz stable. This, again, ensures the boundedness of the solutions of (14) via 
theorem 3.1.

Let us now observe that (13) includes the versions without competition of the models of 
mutualism in [12] and [27] (for [27], also without immigration), the functional distinction 
being a matter of setting the appropriate βij’s equal to 0. Via a comparison argument, one may 
see that the solutions of the models in [12] and [27] are bounded if one discounts immigra-
tion, which is not surprising, since both are models with limited per capita benefits from the 
mutualism.

As a consequence, it is seen that our boundedness results can be applied not only for 
mutualisms which act by reducing removal rates, such as (6), but also for mutualisms which 
enhance growth rates, although, at a glance, the particular form of our system (1) seems to 
tell otherwise.

5. Which species is responsible for unboundedness?

In the examples analysed in the previous section, the n conditions used in the bounding theo-
rems actually reduced to a single threshold quantity, the spectral abscissa of a given matrix, 
which successfully separated boundedness from unboundedness. A natural question to ask 

P Georgescu et alNonlinearity 30 (2017) 4410



4422

is whether the limits Ri have separate roles in the bounding conditions or, from a biological 
perspective, whether the outcome (bounded versus unbounded) is the responsibility of the 
mutualistic interaction of all species together. In this section we argue that, with some addi-
tional hypotheses, one can show that the above results can be caused by a subset of the species 
in the system. This may be important since, when one tries to develop a realistic model of 
mutualism, the attention can be restricted only to the species likely to produce an unbounded 
solution.

Let us assume that the n species are split into two subgroups: group 1 made of x1,...,xm 
on one hand and group 2 made of xm+1,...,xn on the other, with m < n. Further, suppose that 
group 1 gets most of its mutualistic benefits within their own group while group 2 experiences 
an upper bound on the mutualistic benefits from group 1. This can be expressed in the follow-
ing additional hypotheses

fi(x1, ..., xm, xm+1, ..., xn) � gi(x1, ..., xm), 1 � i � m,
fi(x1, ..., xm, xm+1, ..., xn) � hi(xm+1, .., xn), m + 1 � i � n,

the functions gi and hi being assumed to satisfy the same hypotheses assumed for fi in the 
previous theorems. Then we shall define

Ri(s1, s2, ..., sm) := lim
x→∞

ai(six)
gi(s1x, s2x, ..., smx)

, 1 � i � m,

and

Ri(sm+1, sm+2, ..., sn) := lim
x→∞

ai(six)
hi(sm+1x, sm+2x, ..., snx)

, m + 1 � i � n.

The following result shows that only a subset of the total number of species experience 
unbounded growth, while the others decidedly do not.

Theorem 5.1. Assuming (C1) and (C2) for the functions gi and hi, if there are 
α1,α2, . . . αm > 0 such that

Ri(α1,α2, . . . ,αm) > 1, 1 � i � m,

and there are αm+1,αm+2, . . . ,αn > 0 such that

Ri(αm+1,αm+2, . . . ,αn) < 1, m + 1 � i � n,

then x1,...,xm are unbounded if the initial population sizes are high enough while xm+1,...,xn 
remain bounded.

Proof. The proof is very similar to the ones presented for the bounding theorems. We only 
emphasize here the main difference. For the first m species, one may consider

h(t) = min

{
x1(t)
α1

,
x2(t)
α2

, . . . ,
xm(t)
αm

}
.

Furthermore

x′i
xi

= ai(xi)− fi(x1, ..., xm, xm+1, ..., xn) � ai(xi)− gi(x1, .., xm), 1 � i � m
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after which the proof follows the steps from the proof of theorem 2.4. To show that the remain-
ing species are bounded, one can define

h(t) = max

{
xm+1(t)
αm+1

,
xm+2(t)
αm+2

, . . . ,
xn(t)
αn

}

and use the fact that

x′i
xi

= ai(xi)− fi(x1, ..., xm, xm+1, ..., xn) � ai(xi)− hi(xm+1, .., xn), m + 1 � i � n,

after which the steps are the same as those from the proof of theorem 2.2. □ 

To illustrate the above considerations, let us discuss the dynamics of the following model



x′1 = r1x1

(
A1 −

x p
1

K1+b12x p
2 +b13x p

3

)
,

x′2 = r2x2

(
A2 −

x p
2

K2+b21x p
1 +b23x p

3

)
,

x′3 = r3x3

[
A3 −

(
1 +

x p
3

K3+b31x p
1 +b32x p

2

)
x3

] ,

 (15)
with

p > 0, bij � 0, A1A2b12b21 > 1.

It is seen that

x′1 � r1x1A1 −
r1x p+1

1

K1 + b12x p
2

, x′2 � r2x2A2 −
r2x p+1

2

K2 + b21x p
1

with

g1(x1, x2) =
r1x p+1

1

K1 + b12x p
2

, g2(x1, x2) =
r2x p+1

2

K2 + b21x p
1

.

Also,

x′3 � r3x3A3 − r3x2
3,

with

h3(x3) = r3x2
3.

Then

R1(s1, s2) = A1b12

(
s2

s1

) p

, R2(s1, s2) = A2b21

(
s1

s2

) p

, R3(s3) = 0.

If A1A2b12b21 > 1, there are α1,α2 > 0 such that R1(α1,α2) > 1, R2(α1,α2) > 1. From 
theorem 5.1 (or revisiting the considerations of section 2), it then follows by a comparison 
argument that x3 remains bounded, while x1 and x2 grow unbounded (actually, for all initial 
population sizes).

Apart from helping to an easier identification of the ‘troublesome’ (i.e. likely to cause 
unboundedness) species, theorem 5.1 shows that Ri’s may also have predictive power on their 
own (rather than only in association with the other Ri’s, as theorems 2.2 and 2.4 may lead 
one to believe), although, naturally, they may predict only the dynamics of the species they 
are computed for.
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6. Conclusions

Any population model, even if mathematically correct, needs to have further restrictions 
imposed on its solutions in order to be biologically feasible. Positively invariance of solutions 
is, of course, the most basic of them. Boundedness of solutions is also necessary for long 
term predictions in an environment of limited resources (i.e. the logistic assumption). For 
cooperative models, some sort of limitation of mutualistic effects is also necessary for obvious 
reasons. Without it, one can have what is colloquially called the orgy of mutual benefactions 
(May [20]) in which the mutualistic benefits reinforce each other ad infinitum.

In this paper we provided several results concerning the boundedness of solutions for a 
generic multi-species model of mutualism, which represents an extension to the existing lit-
erature on their two-species version. These results are stated in terms of reproductive ratios 
at high population densities for given relative population sizes. Our reproductive ratios are 
growth-to-loss ratios, however, and do not follow the classical ‘sum over all age classes of 
fertility times survival’ definition.

An open question that is a natural follow-up of this research concerns a minimal set of 
conditions (more general than those employed in theorem 3.1) under which the boundedness/
unboundedness dichotomy is characterized by a single threshold parameter, rather by n Ri’s.  
In this regard, the next generation approach of van den Driessche and Watmough [32], while 
successfully deriving basic reproduction numbers for disease propagation models, targets 
another problem (stability), the threshold parameter being computed around the relevant 
equilibrium (the disease-free equilibrium). Now, there is no equilibrium to work with (since 
boundedness is not a notion to be defined around one), and any relevant threshold should con-
sequently have a global appeal.

Our reproductive ratios, the Ri’s are, in some sense, volatile quantities. They are computed 
for given relative population ratios, which are subject to immediate change. That is, they 
characterize only certain instances of the model, rather than the model itself, their interplay 
potentially leading to rich dynamics. In this regard, a natural question is what happens with the 
relative population sizes when all population sizes grow unbounded. More precisely, condi-
tions under which an ‘equilibrium’ is reached (that is, the relative sizes tend to stabilize) may 
be of interest, albeit a theoretical one. Conversely, although a competitive exclusion principle 
cannot hold in the classical sense, it may be of interest to see whether or not a mutualist may 
still ‘win’ by driving the others into ‘relative extinction’.

Another question concerns reasonably minimal sets of conditions to guarantee the exist-
ence and global stability of the co-existence equilibrium, respectively, since several global 
stability results already proven for two-species mutualistic models actually assume a priori 
the existence of such steady state. In our settings, the co-existence equilibrium is obtained 
via the use of Brouwer fixed point theorem, which does not ensure uniqueness. Uniqueness 
might require stronger conditions on functions ai and fi appearing in (1), as strict monotonicity 
component-wise does not appear to suffice.

We emphasise that there will always be limitations due to the fact that there is no general 
form of a mutualistic model. In particular, our settings do not include any model of mutualism 
derived within the modelling framework of Levin’s colonization-extinction metapopulation 
model, such as those of Nee [21] (evolution of coviruses) and Nee et al [22] (plant-pollinator), 
due to the sign pattern of the interaction terms. However, in both [21] and [22], the variables 
represent proportions of patches, not population sizes or densities, leading to constant total 
size models. That is, for the models presented in [21, 22], boundedness is, in some sense, 
already built-in and does not need to be studied separately.
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The dynamics of a general model of a mutualistic interaction has been considered in Travis 
and Post [31] from a stability viewpoint. In [31], the interaction matrix is evaluated at a feasible 
equilibrium, the stability of the mutualistic community being then expressed in terms of the sta-
bility of the interaction matrix. Their stability considerations are then extended to communities 
with a limited amount of competition and a brief, conceptual discussion on the boundedness of 
2D mutualisms is given. Our results are not directly comparable to those in [31], since our focus 
is on boundedness (specifically, on boundedness in terms of threshold parameters), rather than 
on stability. Also, note that our matrix C is, in some sense, a limiting quantity, being defined in 
terms of Ri’s, and is not tied to any particular equilibrium or to any Jacobian.

Our model is tailored, at least formally, to represent situations in which the mutualism 
decreases the mortality of the benefitting species. Although section 4.2 treats the situation 
in which the mutualism increases fertility rates, the treatment is done by splitting the growth 
rates for all species and rearranging the resulting terms so that the rearranged model is for-
mally equivalent to a mortality decreasing mutualism, that is, it relies on the particularities 
of the model, rather than proposes a systematic approach. A distinct framework can be intro-
duced to represent the situation in which the mutualism increases the fertility rates in a more 
general manner, and we plan to do so in a forthcoming paper. Also, a worthwhile extension 
would be to consider abstract frameworks for multigroup models of mutualism and for the 
interplay between mutualisms and other interactions such as predation and competition. This 
would allow for a better treatment of models such as those discussed in Jelle Lever et al [12] 
and Rohr et al [27], which can only be treated in the framework of this manuscript using 
a comparison argument which involves discarding the competition part, which leads to the 
boundedness results not being optimal.
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Appendix. Metzler matrices

We summarise a few matrix theory notions which describe specific properties of Metzler 
matrices used in proving our results.

For given matrices A, B, we shall write A � (�)B if aij � (�)bij  for all i, j and A � (�)B 
if aij < (>)bij  for all i, j. A square matrix A will be called a Metzler matrix if it has nonnega-
tive off-diagonal entries, that is, aij � 0 for all i �= j. For a square matrix A, we shall denote the 
spectrum of A by σ(A) and the spectral abscissa of A by µ(A), defined as

µ(A) = max {�(λ);λ ∈ σ(A)} .

We shall subsequently say that a square matrix A is Hurwitz stable if µ(A) < 0, while A will 
be called Hurwitz unstable if µ(A) > 0. The following lemma states several characteristic 
properties of a certain class of Metzler matrices.
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Lemma A.1 ([25], Theorem 2.1). Let A be a n × n Metzler matrix with negative elements 
on its diagonal. Then the following conditions are equivalent.

 1. A is Hurwitz stable.
 2. The leading principal minors of A are such that the sign of the ith principal minor is 

(−1)i, 1 � i � n.
 3. There is a vector v � 0 such that Av � 0.

A square matrix A is called reducible if there is a permutation matrix P such that PAPT is a 
block upper triangular matrix, that is

PAPT =

(
M11 M12

O M22

)
,

with M11, M22 square matrices of nonzero size. A square matrix A is then called irreducible if 
it is not reducible. Equivalently, a n × n matrix A, n � 2, is irreducible if for any proper subset 
M of {1, 2, . . . , n} there are i ∈ M and j ∈ {1, 2, . . . , n} \M such that aij �= 0.

Let us now indicate several further properties of Metzler matrices.

Lemma A.2 ([7], Theorem 17). Let A be a irreducible Metzler matrix. The following 
properties hold.

 1. µ(A) ∈ σ(A).
 2. There is a vector v � 0 such that Av = µ(A)v.
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