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This paper is dedicated to Mimmo Iannelli on the occasion of his 65th birthday.

Abstract: This logistic model includes three age groups. Juveniles do not reproduce; and

old individuals reproduce at a reduced rate. Pairings between individuals of different fertil-

ity rates may lead to multiple equilibria and bi-stability: the total population converges to

different limits depending on its initial size. The behavior is correlated with transition rates

from high to low fertility groups and with the frequency of pairing among the various groups

of reproduction level. The proportions of adults at equilibrium are roots of a quartic poly-

nomial, alternating sinks and saddles. Necessary and sufficient conditions for the existence

of bi-stability are provided for a simplified model.
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1 Introduction

The logistic model (Verhulst, 1838) includes the effect of limiting factors on population

growth. Its solutions converge to a constant called carrying capacity of the environment,

which is independent of initial conditions.

In logistic two-sex models without age-structure, the population approaches a unique

limit independent of the initial conditions, as in Verhulst’s one-sex model. We show that

asymptotic uniqueness is not the only possibility for two-sex models including groups with

different fertility rates. Interactions between these groups may create a bi-stable regime with

∗corresponding author
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two locally stable steady states. The long-term behavior of solutions depends on the initial

population size.

Maxin and Milner (2000) studied the effect of groups with null fertility on population

growth. Berec and Maxin (2013) highlighted bi-stability in two-sex models for sexually

transmitted diseases sterilizing infected hosts. Hilker (2010) and Berec and Maxin (2013)

observed bi-stability in two-sex models with Allee effect in the birth function. The Allee

effect is characterized by a positive correlation between fertility rate and population size

for small population sizes. Bi-stability appears here because the population is driven to

extinction if its initial value is low enough. We show that bi-stability may characterize the

population if low reproduction is due to internal factors, such as of old age or personal choice

regarding birth control, rather than because of external factors such as sterilizing pathogens

or dispersal, as in the Allee effect. The transition from a high to a low fertility level and the

frequency of pairing between groups are the likely causes of bi-stability.

2 Two-sex model with three fertility groups

We build a logistic model based on three groups with different fertility rates: juveniles, who

do not reproduce, adults, and old individuals with reduced fertility. They are represented

by J(t), A(t), and O(t).































J ′(t) = β
(A(t) + σO(t))2

A(t) +O(t)
− µ̄J(t)− αJ(t),

A′(t) = αJ(t)− (ǭ+ ν)A(t),

O′(t) = νA(t)− η̄O(t),

(1)
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where β is the fertility rate, µ̄ := µ + bP (t), ǭ := ǫ + bP (t), and η̄ := η + bP (t) are the

mortality rates, where P (t) := J(t) + A(t) + O(t) is the total population size. µ, ǫ, and η

are the exponential mortality rates, and b models the population effect on mortality. The

fertility of older individuals is reduced by a factor 0 < σ < 1; α is the transition rate from

juvenile to adult, and ν is the transition rate from adult to old age; (A(t)+σO(t))2

A(t)+O(t)
represents

the total number of matings per time unit multiplied by the probability that those matings

occur between reproductive individuals.

By changing variables x(t) := A(t)
A(t)+O(t)

and y(t) := J(t)
A(t)+O(t)

,































x′(t) = αy(t)(1− x(t)) + (η − ǫ)x(t)(1− x(t))− νx(t),

y′(t) = β
(

x(t) + σ(1− x(t))
)2 − αy(t)− αy(t)2 + (η − µ)y(t) + (ǫ− η)x(t)y(t),

P ′(t)
P (t)

=
β
(

x(t) + σ(1− x(t))
)2 − µ̄y(t)− ǭx(t)− η̄(1− x(t))

1 + y(t)
.

(2)

Eq. (2) contains a planar sub-system in x and y. Equilibria are roots of a fourth degree

polynomial, of which it is difficult to establish the total number of real non-negative roots.

We simplify further by assuming µ = ǫ = η and α = ν. Then,















x′(t) = αy(t)(1− x(t))− αx(t),

y′(t) = β
(

x(t) + σ(1− x(t))
)2 − αy(t)− αy(t)2.

(3)

Once the behaviors of x(t) and y(t) are known, P (t) is governed by

P ′(t) =

(

β
(

x(t) + σ(1− x(t))
)2

1 + y(t)
− µ̄

)

P (t). (4)

The equilibrium points (x∗, y∗) of Eq. (3) satisfy y∗ = x∗

1−x∗
, where x∗ is a root of

f(x)= β(1− σ)2x4 + 2β(1− σ)(2σ − 1)x3 + βσ2

+β(1− 6σ + 6σ2)x2 +
(

2βσ(1− 2σ)− α
)

x.

(5)

4



Biologically, x∗ and y∗ must be in the interval [0, 1]. We show that equilibrium points are

either sinks or saddles, and these two types alternate.

Theorem 2.1. Equilibrium points of Eq. (3) alternate between sinks and saddle points.

Hence, there are no periodic solutions.

Proof. The Jacobian associated with Eq. (3) is

J(x, y) =

















−α(1 + y) α(1− x)

2β(1− σ)
(

x+ σ(1− x)
)

−α(1 + 2y)

















. (6)

Because its trace is negative, every equilibrium point is either a saddle or a sink. Also,

because solutions of the system are bounded, periodic solutions are ruled out by Bendixson’s

criterion: denoting F1(x, y) and F2(x, y) the right-hand sides of Eq. (3),

∂F1

∂x
+

∂F2

∂y
= −3αy − 2α < 0. (7)

To show that equilibria alternate between sinks and saddles, we analyze the determinant of

J(x, y) using the identities y∗ =
x∗

1− x∗
, β =

αx∗

(1− x∗)2
(

x∗ + σ(1− x∗)
)2 . It is

det J(x∗, y∗) =
α2
(

3(1− σ)(x∗)2 + (2σ − 1)x∗ + σ
)

(1− x∗)2
(

x∗ + σ(1− x∗)
) . (8)

Because the trace is negative, the determinant is positive if and only if (x∗, y∗) is a sink, that

is whenever

3(1− σ)(x∗)2 + (2σ − 1)x∗ + σ > 0. (9)

Eq. (5) implies that

f ′(x∗) =
−α
(

3(1− σ)(x∗)2 + (2σ − 1)x∗ + σ
)

(1− x∗)
(

x∗ + σ(1− x∗)
) . (10)
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From Eq. (9) and (10), (x∗, y∗) is a sink if and only if f ′(x∗) < 0 and a saddle if and only

if f ′(x∗) > 0. Also, f(0) = βσ2 > 0 shows that the first equilibrium is a sink, followed by a

saddle, and so on.

In this proof, we assumed f(x∗) 6= f ′(x∗). The non-hyperbolic equilibrium points at

which f(x∗) = f ′(x∗) require extra conditions on the parameters, but these conditions are

unlikely to occur in reality, so that we ignore them.

We shall determine a necessary and sufficient condition on the parameters for existence

of multiple equilibria. We use Sturm’s theorem to analyze the number of real roots of f in

(0, 1) (Dörrie 2013).

Definition 2.1. A Sturm chain {pn(x)}∞n=0 for f in Eq. (5) is:














p0(x) = f(x), p1(x) = f ′(x),

pi+1(x) = −rem(pi−1(x), pi(x)),

(11)

where rem returns the remainder from the long-division of the polynomial arguments.

Denoting by s(a) the total number of sign changes in the Sturm chain Eq. (11) for x = a,

Sturm’s theorem states that:

Theorem 2.2. For real numbers a and b not roots of a given polynomial P , the total number

of distinct real roots of P in (a, b) is equal to s(a)− s(b).

The total number of roots of f in (0, 1) is s(0)− s(1), if neither 0 nor 1 is a multiple root

of f . f being of fourth degree, this method requires the polynomials p2, p3, and p4. We used

Maple to generate them and to evaluate them at x = 0 and x = 1. We only show the terms

affecting the sign of the relevant quantity, or simply the sign “+” or “-” when that quantity

has a fixed sign for all parameter values.
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For the Sturm chains at x = 0 and x = 1,

p0(0), p1(0), p2(0), p3(0), p4(0) (12)

are equivalent to

+, 2βσ(1− 2σ)− α, α− 2σ(α + β),
3α

8
(2σ − 1) + βσ, T, (13)

and

p0(1), p1(1), p2(1), p3(1), p4(1) (14)

are equivalent to

−, −, 7− 8σ,
3α

4
(8σ − 7) + β, T, (15)

where the sign of T depends on α through the quadratic function

g(α) = −27(1− σ)α2 + 256β

(

σ2 − σ − 1

32

)(

σ − 1

2

)

α− 16β2σ. (16)

We seek conditions for the existence of more than one equilibrium. From Theorem

2.1, Eq. (3) cannot have exactly two positive equilibria because this would imply either a

homoclinic orbit or two heteroclinic orbits forming a cycle.

The Sturm chains in Eq. (13) and (15) have at most four sign changes. Eq. (15) has

at least one sign change since 7 − 8σ < 0 implies
3α

4
(8σ − 7) + β > 0. Eq. (13) has at

least one sign change, because 2βσ(1 − 2σ) − α > 0 implies α − 2σ(α + β) < 0. The total

number of sign changes in Eq. (13) is 1, 2, 3, or 4 and in Eq. (15) 1, 2, or 3. Because it is

impossible to have exactly two equilibrium points in the interval (0, 1), we look for exactly

three equilibrium points. This requires that s(0) = 4 and s(1) = 1.

In order to have s(0) = 4, the Sturm chain in Eq. (13) must be: +,−,+,−,+. Therefore,

α > 2βσ(1− 2σ), α >
2βσ

1− 2σ
, α >

8βσ

3(1− 2σ)
, σ <

1

2
, T > 0, (17)
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and

α >
8βσ

3(1− 2σ)
, σ <

1

2
, T > 0. (18)

Because σ < 1/2 implies σ < 7/8, the only Sturm chain in Eq. (15) at x = 1 with s(1) = 1

is −,−,+,+,+, which requires

α <
4β

3(7− 8σ)
, T > 0. (19)

Combining Eq. (18) and (19), we obtain the necessary conditions

8βσ

3(1− 2σ)
< α <

4β

3(7− 8σ)
, σ <

1

2
, T > 0. (20)

The bounds on α in Eq. (20) imply that

σ2 − σ +
1

16
> 0. (21)

We analyze the sign of T through the quadratic function g in Eq. (16). Its discriminant is

positive because, by Eq. (21),

∆α = 65536β2

(

σ2 − σ +
1

16

)3

> 0. (22)

The roots α1 and α2 of g in Eq. (16) are

128β

27(1− σ)

(

(

1

2
− σ

)(

1

32
+ σ − σ2

)

±
(

σ2 − σ +
1

16

)3/2
)

. (23)

They areboth positive. So, in order to have g(α) > 0, we need α ∈ (α1, α2).

Theorem 2.3 shows that the thresholds on α in Eq. (20) are outside the interval (α1, α2).

Theorem 2.3. α1 and α2 are given by Eq. (23). Eq. (3) admits three equilibrium points,

two locally stable and one unstable, if and only if α ∈ (α1, α2) and σ <
2−

√
3

4
≈ 0.07.
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Proof. Compute















g
(

8βσ
3(1−2σ)

)

= −16

3

β2σ

(1− 2σ)2
(16σ2 − 16σ + 1)2 < 0,

g′
(

8βσ
3(1−2σ)

)

=
64β(σ2 − σ + 1/16) (1 + 8σ(1− σ))

1− 2σ
> 0,

(24)















g
(

4β
3(7−8σ)

)

= −32β2

3

(16σ2 − 16σ + 1)2

(7− 8σ)2
< 0,

g′
(

4β
3(7−8σ)

)

= −4β(32σ2 − 44σ + 11)(16σ2 − 16σ + 1)

7− 8σ
< 0.

(25)

Eq. (24) implies
8βσ

3(1− 2σ)
< α1 and Eq. (25) implies α2 <

4β

3(7− 8σ)
. Eq. (21) gives

σ <
2−

√
3

4
≈ 0.07.

Eq. (4) for P (t) implies that each interior equilibrium of Eq. (3) may lead to extinction

of the total population if the mortality rate µ is large enough. For an equilibrium (x∗, y∗),

P (t) −→ 0 if β(1− x∗)
(

x∗ + σ(1− x∗)
)2 ≤ µ,

P (t) −→ β(1− x∗) (x∗ + σ(1− x∗))2 − µ

b
otherwise.

(26)

Eq. (1) can exhibit bi-stability between the trivial equilibrium and a positive one. This

phenomenon is called strong Allee effect. Here, it is caused by the transitions from higher

to lower fertility groups rather than by low population densities.

We use two numerical simulations to show this phenomenon. Figure 1 shows bi-stability

between two positive equilibria, and Figure 2 shows bi-stability between extinction and a

positive equilibrium, which is obtained just by increasing the mortality rate from the first

case.
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Figure 1: Bi-stability between two positive equilibria. β = 0.55, µ = 0.001, σ = 0.0353,

α = 0.08, α1 = 0.00691, α2 = 0.095.

Figure 2: Bi-stability between extinction and a positive equilibrium. β = 0.55, µ = 0.002,

σ = 0.0353, α = 0.08, α1 = 0.00691, α2 = 0.095.
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3 Necessary conditions for bi-stability

We analyze several scenarios identifying parameters or assumptions responsible for bi-stability.

In each scenario, we only address the existence of more than one equilibrium for the simplified

version of the corresponding model.

3.1 Inter-age group mating necessary for bi-stability

We add the assumption of no mating between adult and old individuals to Eq. (1):































J ′(t) = βA(t) + βσ2O(t)− µ̄J(t)− αJ(t),

A′(t) = αJ(t)− ǭA(t)− νA(t),

O′(t) = νA(t)− η̄O(t).

(27)

The sub-system in x(t) and y(t) is:















x′(t) = αy(t)(1− x(t))− αx(t),

y′(t) = βx(t) + βσ2(1− x(t))− αy(t)− αy(t)2.

(28)

For any equilibrium, y∗ is a root of

f(y) = αy3 + 2αy2 + (α− β)y − βσ2. (29)

Denoting by y1, y2, and y3 the roots of f ,

y1 + y2 + y3 = −2 < 0 and y1y2y3 = βσ2 > 0. (30)

If the three roots are real, at least two of them are negative. Hence, there cannot exist three

equilibrium points in the interval (0, 1), which is a necessary condition for bi-stability.
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3.2 Transition from lower to higher fertility may not be necessary

for bi-stability

We determine whether bi-stability is possible when we remove the juveniles. This case leaves

only transitions from higher to lower fertility groups. Eq. (1) becomes















A′(t) = β
(A(t) + σO(t))2

A(t) +O(t)
− µ̄A(t)− αA(t),

O′(t) = αA(t)− µ̄O(t),

(31)

and the ordinary differential equation for the fraction x(t) = A(t)
A(t)+O(t)

is

x′(t) = β(1− x(t))
(

x(t) + σ(1− x(t))
)2 − αx(t). (32)

For the Sturm chains at x = 0 and at x = 1,

p0(0), p1(0), p2(0), p3(0) (33)

are equivalent to

+, βσ(2− 3σ)− α, α− σ(3α + 2β), T, (34)

and

p0(1), p1(1), p2(1), p3(1) (35)

are equivalent to

−, −, (7− 9σ)α− 2β, T, (36)

where the function

T = g(α) = 4α2 + β(27σ2 − 18σ − 1)α + 4β2σ. (37)
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The existence of three roots in the interval (0, 1) requires that the chain of Eq. (33) have

three sign changes and the chain of Eq. (35) have no sign changes:

βσ(2− 3σ)− α < 0, α− σ(3α + 2β) > 0, (7− 9σ)α− 2β < 0, T < 0. (38)

In summary,

2βσ

1− 3σ
< α <

2β

7− 9σ
, σ <

1

9
and α1 < α < α2, (39)

where

α1,2 = β

(

−27σ2

8
+

9σ

4
+

1

8
± 1

8
(1− σ)1/2(1− 9σ)3/2

)

. (40)

These conditions are similar to those found for Eq. (3), which shows that transition from

higher to lower fertility groups may be more important in creating bi-stability than the

opposite (such as from juvenile to adult).

3.3 Partial sterility at birth does not cause bi-stability

We assume that a fraction δ ∈ [0, 1] of newborn individuals are sterile, in order to assess the

importance of transitions from high to low fertility rates for bi-stability to occur, in contrast

with a reduction of fertility at birth. The model is


















A′(t) = β(1− δ)
(A(t) + σO(t))2

A(t) +O(t)
− µ̄A(t),

O′(t) = βδ
(A(t) + σO(t))2

A(t) +O(t)
− µ̄O(t),

(41)

and the equation for the adult fraction x(t) = A(t)
A(t)+O(t)

is

x′(t) = β
(

x(t) + σ(1− x(t))
)2
(1− δ − x(t)). (42)

There is just one positive steady state, x∗ = 1 − δ, which is globally stable. Bi-stability is

then impossible.
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4 Inter-group matings and their role in bi-stability

Bi-stability requires the existence of a low fertility group, a transition from high to low

fertility groups, and pairings between these groups. We derive parameter thresholds for

bi-stability.

We begin with a two-sex model with two age-classes (Milner and Yang, 2009). We assume

that each of the four age-sex groups mates only within their age-classes, except for a fraction

p ∈ [0, 1] of the old male population mating with the adult female population.



































































F ′

a(t) = βγf

(

M(Fa(t),Ma(t) + pMo(t))
Ma(t) + σmpMo(t)

Ma(t) + pMo(t)

+σfσmM(Fo(t), (1− p)Mo(t))

)

− µ̄fFa(t)− αfFa(t),

M ′

a(t) = βγm

(

M(Fa(t),Ma(t) + pMo(t))
Ma(t) + σmpMo(t)

Ma(t) + pMo(t)

+σfσmM(Fo(t), (1− p)Mo(t))

)

− µ̄mMa(t)− αmMa(t),

F ′

o(t) = αfFa(t)− µ̄fFo(t), M ′

o(t) = αmMa(t)− µ̄mMo(t).

(43)

Fa(t) and Ma(t) denote the adult women and men population sizes and Fo(t) and Mo(t)

represent the old women and men population sizes. γf is the probability that a newborn is

female, and γm := 1−γf . M is the mating function with one argument for each sex (Iannelli

et al., 2005). All other parameters have the same meaning as those in Eq. (1) with subscript

indicating sex.

Assuming no sex effect on the parameters, Eq. (43) becomes































A′(t) = β

(

M(A(t), A(t) + pO(t))
A(t) + σpO(t)

A(t) + pO(t)
+ σ2M(O(t), (1− p)O(t))

)

−µ̄A(t)− αA(t),

O′(t) = αA(t)− µ̄O(t),

(44)
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and the equation for the adult fraction x(t) =
A(t)

A(t) +O(t)
is

x′(t) = β(1− x(t))

(

M(x(t), x(t) + p(1− x(t)))
x(t) + σp(1− x(t))

x(t) + p(1− x(t))

+σ2M(1, 1− p)(1− x(t))

)

− αx(t).

(45)

Using the harmonic mean mating function

M(x(t), y(t)) =
x(t)y(t)

x(t) + y(t)
, (46)

Eq. (45) becomes

x′(t) = β(1− x(t))

(

x(t)(x(t) + σp(1− x(t)))

2x(t) + p(1− x(t))
+

σ2(1− p)

2− p
(1− x(t))

)

− αx(t) (47)

and, with the substitution

y(t) =
x(t)

1− x(t)
∈ [0,∞), (48)

any positive equilibrium (x∗, y∗) has y∗ solution of

y(y + pσ)

2y + p
+

σ2(1− p)

2− p
− α

β
y(y + 1) = 0, (49)

equivalent to the cubic

a3y
3 + a2y

2 + a1y + a0 = 0, (50)

where

a3 = 2α(p− 2), a2 = (p− 2)(αp+ 2α− 1),

a1 = (α− σ)p2 + 2(σ − σ2 − α)p+ 2σ2, a0 = σ2p(1− p).

(51)

The discriminant of Eq. (50) is

∆ = a2
2a1

2 − 4a3a1
3 − 4a2

3a0 − 27a3
2a0

2 + 18a3a2a1a0 (52)
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and Eq. (50) has three real roots if ∆ > 0. Because a3 < 0 and a0 > 0, the three roots, if

real, will be positive whenever a2 > 0 and a1 < 0. a2 > 0 implies

α <
1

p+ 2
(53)

and a1 < 0 implies

α >
2σ2(1− p) + pσ(2− p)

p(2− p)
. (54)

Combining Eq. (53) and (54), we obtain

2σ2(1− p) + pσ(2− p)

p(2− p)
< α <

1

p+ 2
, (55)

and

σ <
4p− 2p2

4p− p3 +
(

p(4− p2)(8− 4p− p3)
)1/2

. (56)

The condition ∆ > 0 is not easy to write in terms of similar thresholds. However, the upper

bound on σ written in Eq. (56) indicated that the reduction in fertility causing bi-stability

is related to the frequency of pairings across age groups. Figure 3 shows the regions in the

(σ, α)-plane where f has three real positive roots, for various values of the fraction of the old

male population mating with adult females, p. The larger the inter-age pairing, the larger

the probability of having more than one equilibrium.

Then, bi-stability thresholds depend on the fertility reduction factor σ, on the fraction

of the old male population mating with adult females p, and on the transition rate α from

young to adult. Furthermore, the lower the fertility rate due to σ, the larger the range of

the transition rate α causing bi-stability.
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α = transition rate from young to adult, σ = reduction factor of fertility from

adult to old, p = fraction of the old male population mating with adult females.

α p = 1 α p = 0.6

α p = 0.1 α p = 0.05 α p = 0.01

Figure 3: Regions of bi-stability
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5 Conclusion

The age-structured logistic model has a threshold below which the population goes extinct

and above which the population size converges to a unique positive limit value. When fertility

decreases with age and matings occur across age groups, the total population size converges

to one of two different limits, depending on its initial value. This behavior is due to the

existence of two locally stable positive equilibria.

Empirical applications of the model include problems in ecology related to conservation

and to pest control. In conservation, the purpose is to maintain the population size at high

levels while in pest control the purpose is to drop the population. In both cases, the Allee

effect for populations falling below a certain level should be taken into account. We showed

that the Allee effect can not only result from lower population densities or external factors,

but also from varying fertility and from mating across groups.

According to Courhamp et al. (2008), the population grows slower or declines at low

densities because of individual fertility and mate choice. This is what we have developed

here. Females of certain species of fish mate with big size males because of their higher

sperm count, which could be linked to a better reproductive outcome. This behavior was

also reported for the Blue crab (Callinectes sapidus), the Caribbean spiny lobster (Panulirus

argus), and the New Zealand rock lobster (Jasus Edwardsii). Courchamp et al. (2008), give

more examples of species with assortative mating linked to fertility.
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